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ABSTRACT

When an operating system (OS) runs on a virtual machine (VM), a hypervisor, the software
that facilitates virtualization of computer hardware, provides a service called introspection,
which is used for monitoring the internal state of the VM. However, a VM still shares all
of the vulnerabilities of its resident OS and software. At some point in time, it will likely
be the victim of a successful exploitation. In this research, we develop a security solution,
leveraging introspection and enforcement of a separate shadow access control list (SACL)
in the hypervisor to protect critical user files hosted on a VM against a range of zero-day

attacks.

The main security features of our solution include 1) zero-footprint in the guest VM by

maintaining an out-of-guest SACL and other required security information in the hypervisor;
2) protection of critical user files from unauthorized access even if an attacker has managed

to obtain root privileges on the VM; 3) application white listing to thwart malware execution;
and 4) kernel protection by denying both kernel reboot and runtime addition of kernel
modules. We conclude that our solution can successfully protect user files against
unauthorized access. The observed performance overhead, although significant, remains
within usable levels and is mainly attributed to the context switch between the hypervisor
and the VM.
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CHAPTER 1

Introduction

System virtualization, which has been increasing in popularity over the last few years, makes
it possible to run multiple different operating systems (OS) on the same physical machine.
Virtual machines (VM) are run independently of each other on the same physical machine,
known as a host, without any indication that there is another OS running on the same host.

The software that facilitates this resource sharing capability is called a hypervisor.

The emergence of cloud computing has increased the need for many new and different
services from global vendors. According to the National Institute of Standards and Tech-
nology (NIST) [1], "cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction."

Such services require increased resources, a demand that virtualization addressed. Instead
of having many separate physical machines running the required various software, which
usually results in under-utilization, one machine with better technical specifications and
capabilities! was used; with virtualization, each vendor could run services on a dedicated
VM.

In order to improve network security on these machines, as well as redundancy among
different services, service providers started using many different VMs per vendor, instead
of having one VM running all the required services. In addition to requiring fewer resources
by running one or two services, vendors could be reassured by knowing that if one VM
fails, the rest of the services would keep running. Furthermore, having each VM run only
a few services significantly reduces the attack surface available for possible vulnerability

exploitation.

This increase in the use of virtualization has driven hardware manufacturers like Intel and

AMD to introduce special virtualization CPU instructions that demonstrate better, more

ITechnical specifications and capabilities include memory capacity and multi-core central processing
units (CPUs).



reliable, and more secure allocation, sharing, usage, and performance.

1.1 Problem Statement

When an OS runs directly on a physical machine, the OS allocates and uses the machine’s
resources to protect itself from network or other types of attacks. When it runs on a virtu-
alization platform, however, the hypervisor stands between the hardware and the running

software, and can monitor what is happening inside a VM.

Despite the evolution of CPU virtualization instructions and the continuous development
of more efficient and secure hypervisors, the bottom line remains the same: a VM is still a
system with all the vulnerabilities of its running OS and software. At some point in time, it

will most likely be the victim of a successful exploitation.

Although simple to manage and efficient, the native Linux file permission system lacks
fine-grained user/group access to files. Once users belong to a group, nothing prohibits
them from accessing all the files accessible to that group. Furthermore, when attackers gain
access to a system, they will usually try to escalate their privileges by having access to the
root account. After privilege escalation, there is unrestricted access to the entire system and
nothing out of reach; the attackers are free to read and modify files and change the system’s

configuration to their liking in order to serve their purposes.

Garfinkel et al. [2] introduced a new technique that leverages the hypervisor’s viewing ability.
Virtual machine introspection (VMI) is the “approach of inspecting a virtual machine from
the outside for the purpose of analyzing the software running inside it” [2]. In this context,
outside means that the inspecting application resides outside the monitored VM and can
access the VM’s state through the hypervisor. Because a system will be eventually subverted,
we wanted to leverage the introspection capability of a hypervisor to try to protect critical
files for the OS, the user, or both. We wanted to create an out-of-guest access control
list (ACL), which we call the shadow access control list (SACL), for managing file access
inside a VM. We call this mechanism Protecting Compromised Systems with a virtual-

machine protection and checking system using out-of-guest permissions (VMPCS-OGP).

In our research, we developed a prototype for a file-access monitor and control outside a

VM. We used a 64-bit Ubuntu OS running on top of a Xen hypervisor. The prototype



leverages the VMI capability of the Xen hypervisor leveraged with the LibVMI application
program interface (API) [3], as well as DRAKVUF [4], a system used for dynamic malware
analysis. It includes a modified DRAKVUF implementation and prototypes of the ACL
kept on the hypervisor and enforced on the guest VM. Our approach is to provide a stricter

environment for file access.

In this work, we try to assess how we can leverage the introspection capabilities of the Xen
hypervisor to improve the confidentiality, integrity, and availability mechanisms built into
the OS. Some of these cases include denying the root user access to parts of the filesystem.
We aim to make a more fine-grained access control to fill the gap of the Linux native
permission bits by denying file access to certain users that belong to a group with access.
Furthermore, we aim to alter the user permissions by keeping a SACL. Moreover, as part of
covering the tracks of the malicious activities, we try to enforce append-only permissions
instead of writing for specific cases of files, which include primarily log files, as we aim to

prevent a malicious action being removed from any logs.

This solution could potentially be used in a variety of platforms like Internet of Things (IoT)
or supervisory control and data acquisition (SCADA) systems, cellphones, cloud solutions;
essentially, everything that runs on a virtualized environment. It could also be used to
enhance the filesystem security of end-of-life systems that do not receive any security

updates and are more susceptible to exploitation.

1.2 Research Questions
The primary issue we address in this research is whether we could enforce out-of-guest
permissions to check access to the files of a system so that the attacker is not able to read or

write critical files on the system. Following are the questions addressed by this research:

* What is the best way to implement a monitor for file access on the guest?

* What is the performance overhead?

* Can this mechanism be leveraged to identify a compromised system or a system
actively being compromised?

* [s it manageable to monitor all files on a system or only specific ones?

* What is the best way to implement VMPCS-OGP on a guest and still provide usability

and protection?



* Can VMPCS-OGP be used to discover how a system was compromised and the
attackers’ methods for compromising a system?

* Can we return a valid error to the VM while denying access to a file so that it does
not reveal the extra security check imposed by the hypervisor?

* Can we enforce an append-only write policy for files like logs?

1.3 Organization

This paper is organized into five chapters. Chapter 1 introduces the concepts and thesis
focus. Chapter 2 covers some background information for the platform used in this research,
as well as some of the security solutions already presented that make use of VMI. Chapter 3
analyzes the design and methodology of the implemented mechanism, while Chapter 4
explains the test methodology, test cases, and performance testing results. It also considers
the impacts not only on performance overhead but on overall system usability. Chapter 5

presents our conclusions and suggest possibilities for future work.



CHAPTER 2:
Background

This chapter presents information about the relevant software and hardware. The first
section gives a brief introduction on virtualization and its benefits; it then describes the Xen
hypervisor. The next section overviews the LibVMI API and DRAKVUF, the library and
main application we leverage in this research, as well as the system call functionality and

conventions. Finally, we review some of the existing solutions that leverage introspection.

2.1 Virtualization

As mentioned in Rosenblum and Garfinkel [5], running multiple or different services on
a single OS is an implementation method that vendors are abandoning. In recent years,
advances in computing have enabled users to run a plethora of different software, which
became a challenge to manage efficiently and securely because each service required its
own specific OS configuration. Over time, hardware has become inexpensive and service
providers now prefer to run one service per physical system to achieve higher security, since
each OS can be configured specifically for the one service it is dedicated to running. On
the downside, running one service per physical machine results in the under-utilization of
hardware and capabilities, as well as increased maintenance costs. However, as observed
by Rosenblum and Garfinkel [5], hosting different VMs on a single and powerful system
(Figure 2.1) solves many of the problems. VMs result in resources being used efficiently,
with each service using only a part of the underlying hardware. VMs also allow easier
security implementation, as it is much simpler securing one VM running one service than
having to combine all of them into one. Additionally, virtualization achieves redundancy
between services since each VM is independent of the rest; any one failure does not affect
the other VMs.

The advantages of virtualization do not stop there: easy backup, restore, cloning, and
system migration are just a few of them. In case of corruption or misconfiguration, creating
snapshots of entire machines and restoration to a previous state has become an extremely
easy task. Also, modern hypervisorsimplement a very solid and sophisticated VM isolation;

thus, pivoting from one VM to another has become extremely difficult.

5
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Figure 2.1. Evolution of software deployment from single OS to virtualiza-
tion.

Hypervisor is the software that drives the mechanism of virtualization. It runs directly on
the hardware, uses a separate OS installation, and resides outside all the guest VMs. At the
same time, since the hypervisor manages the allocation and usage of all physical resources,

it can see the internal state of each VM.

2.1.1 Hypervisor Types
Different vendors provide their solutions for virtualization. Generally, hypervisors are sep-
arated in two categories: Type-I (bare-metal) hypervisors and type-II (hosted) hypervisors.

Figure 2.2 shows the basic architectural difference between these two types.

Type-II hypervisors are applications which require a host OS to run on.? These hypervisors
work like any other application and the VMs run on top of them. Although the average
user, as well as those using them for simpler applications or as a testing environment, will

find them less complicated to manage, type-II hypervisors perform worse than type-I, as

2Typical type-II solutions are VMWare Workstation and Oracle VirtualBox.



explained later.

Type-I hypervisor Type-II hypervisor
VM, VM, VM, VM,
App App App App
Operating Operating Operating Operating
System System System System
Hypervisor / OS Hypervisor
Host hardware Operating System
Host hardware

Figure 2.2. Architectural difference between type-l and type-Il hypervisors.

Type-1 hypervisors run directly on the hardware, managing the resources directly without
the intervention of any host OS, and provide a significant performance advantage. The
advantage comes from eliminating the underlying OS of the type-II hypervisors. A type-
IT hypervisor must ask the host OS every time for the resources it needs to allocate, an
action that produces performance overhead. Type-I hypervisors implement the resource
management on their own, since they run on a more privileged OS, and they are actually part
of it. The type-I hypervisors run at the same privilege level with the OS and can manage the
resources without asking the host OS. Therefore, type-1 hypervisors provide more efficient
resource management of the hypervisor and its hosted VMs. Type-I hypervisors are most
commonly used in server deployment and enterprise solutions, where performance and

efficiency are important.

2.1.2 The Xen Project

The product of the Xen Project [6] is an open-source, type-I hypervisor. Its small footprint
and limited interface to the guest make it more robust and secure. The hypervisor runs
directly on top of the hardware, as depicted in Figure 2.3. It requires a host OS that acts as
an interface between the hypervisor and the user, as well as “paravirtualized” guests. This
host OS is called the control or privileged domain, also known as Dom0, and runs at a more
privileged level than the rest of the VMs. The rest of the VMs are called guest domains, or

DomUs, and run on a lower privilege level.
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Figure 2.3. Xen hypervisor architecture. Source: [6].

To understand how this happens, we need to introduce another CPU architectural feature,
which provides different privilege levels for the execution of the CPU’s instructions, de-
pending on the nature of the program invoking them. This mechanism, called protection
rings, is present on all modern CPUs and is used by all modern OSes. Protection rings
are numbered O to 3, with O being the most privileged. Usually, applications run in ring
33 and the kernel and device drivers run in ring 04. But, in order to allocate and manage
the shared resources the hypervisor must run at a more privileged level than the guest OS;
otherwise, there will be a conflict when the guest OS and the hypervisor try to manage the
same resource. Paravirtualization, a technique by which OS vendors had to modify their
kernels to run on a privilege level other than 0, such as 1 or 2, was initially used to avoid
that conflict between the guest OS kernel and the hypervisor.

For type-I hypervisors to work more efficiently and without any guest OS modification, CPU
manufacturers have introduced a new ring, -1 (Figure 2.4), to support virtualization. Called
hypervisor mode, this new ring is even more privileged than ring 0 and is employed only

during hypervisor execution. This architecture is supported on newer CPUs that employ

3Ring 3 is also called unprivileged or user mode, or user space.
4Ring 0 is also called privileged or supervisor mode, or kernel space.



virtualization technology (VT), VT-x for Intel and AMD-V for AMD processors.

As virtualization keeps advancing, there is always the question of whether we can leverage
virtualization to provide more than simply efficient sharing and usage of resources. The
unique ability of the hypervisor to access the state of a VM, at the granular level of CPU

registers and memory bytes, has been the center of research ever since the technology was

invented.
3: Applications
2: Not Used §
1: Not Used g
\ \ 0: Kernel, Drivers 3
-1: Hypervisor =
ag
[¢]
o
v

Figure 2.4. x86 protection rings. Adapted from [7].

2.2 Virtual Machine Introspection

In this section, we introduce a rough timeline of the APIs significant for our research that
evolved around virtualization and VMI. These include LibVMI and the later implemented
altp2m for Xen. We also mention DRAKVUF [4], a tool that employs LibVMI and altp2m
to implement a virtualization-based, agentless black-box binary analysis system. We base
our solution on the DRAKVUF platform.

First introduced as a concept by Garfinkel et al. [2], VMI leverages the more privileged
status of the hypervisor to inspect the internal state of a VM. The Xen hypervisor was first
to include introspection methods to inspect its guest VMs. Although these introspection
methods were included in Xen, implementing introspection in a way that is secure and
efficient is a significant task. To make these methods more accessible to programmers,
XenAccess [8] was implemented, as well as an API called mem-events. Because of strong

research and security interest, introspection in Xen progressed; eventually, LibVMI [3], a

9



library that makes the implementation and automation of introspection on the Xen hyper-
visor easier, was introduced. LibVMI provides access to third-party applications for part
of the hypervisor’s introspection methods, using a C or Python interface, the latter called
PyVMI.

Initially, hypervisor memory management included an extra step in the memory-access
mechanism (Figure 2.5), because each VM assumes that it has complete control over the
entire address space and that it writes directly on the hardware. Normally, the OS would
translate the virtual address used by an application to a physical address on the hardware.
To a hypervisor, each VM is considered an application. Since every OS will eventually try
to write on the same physical address, the hypervisor must make a distinction between the
VMs. To achieve that distinction, the hypervisor assigns each VM a specific physical address
space and, as explained in Chisnall [9], tracks the overall memory usage with an additional
page table (PT) translating between a VM-specific guest machine frame number (GMFN)
and the machine frame number (MFN).

apicaion [T T ] virwa

Kernel Pseudo-physical

Hypervisor ' Machine

Figure 2.5. Hypervisor memory management concept. Source: [9].

With the introduction of input/output memory management unit (IOMMU), this extra step
is no longer needed because hardware extended page tables (EPTs) are included in the
CPUs; the hypervisors can use these hardware EPTs instead of software ones, a method
called hardware-assisted paging. Hardware-assisted paging implemented better isolation,
and enhanced security between the VMs, with significantly reduced overhead. Following
that development, as well as Intel’s addition of 512 EPTs in its Haswell generation CPU,

XenAccess and mem-events were redesigned and evolved into a system called altp2m.

10



One of the most critical changes that came with altp2m was the concurrent assignment of
multiple EPTs per VM (Figure 2.6). Monitoring processes of multi-virtual CPU guests is
more secure and is clearly a significant improvement. Because each virtual CPU can be
assigned its own EPT the hypervisor can now keep track of different EPTs with different
permissions, which can change during the execution of the VM. Other solutions keep only
one EPT per VM, resulting in a less secure and isolated virtual environment between the
VMs and the VMs’ processes.

Process 1: Guest Virtual Process 1: Guest Virtual
Address (GVA) Address (GVA)
Process 2: (GVA) Process 2: (GVA)
Process 3: (GVA) Process 3: (GVA)
Process n: (GVA) Process n: (GVA)
Guest Physical Address Guest Physical Address
VM VM
Machine Physical Address Machine Physical Address

Figure 2.6. Normal versus altp2m multiple EPT assignment. Source: [10].

LibVMI is an API that provides exposure to a subset of Xen’s VMI functionalities, as well
as other platforms. LibVMI makes it possible to monitor the state of any VM, including
the memory and CPU state. Memory can be accessed directly using physical addresses,
or indirectly with the use of virtual addresses, OS symbols, and user-application symbols.
It can monitor memory events,> register events, and provide notifications for them. This
allows the execution of callback functions, while the monitoring application resides outside
the VMs and accesses the VMs through the hypervisor (Figure 2.7).

LibVMI focuses on a subset of introspection methods that provide memory reading and

writing capabilities from running VMs. It also provides methods for accessing and mod-

SMemory events are classified as memory read, write, and execute.

11



ifying CPU registers, as well as helper methods to pause and un-pause a VM. Accessing
a VM’s memory space is not a trivial task. After detecting where the page directory is,
a scan of the page tables follows in order to detect the memory mapping of the running
process. This gets translated into a virtual address, which the hypervisor later translates into

a physical address. Figure 2.8 shows a slightly different request, reading a kernel symbol.

e N ‘( M)
LibVMI System L ~
(Host OS/Privileged VM) Monitored VMs
App(C) LA Windows
Linux
LibVMI Other OS
. J J,J
[ Hypervisor/Virtualization J

Figure 2.7. LibVMI out-of-guest access of VM state. Source: [11].

Xen’s introspection methods significantly impact system security. The monitoring appli-
cation resides on the host and accesses the VMs’ state from the hypervisor, which implies
a zero-footprint monitoring tool from the VM’s perspective. In other words, the monitor

does not leave a trace of its action that can be detected from inside the guest.

Although this development was game-changing, it had its drawbacks. Just monitoring those
values of specific parts of memory, or the CPU registers, over an interval to make any
inferences about the running state of the VM leaves the VM vulnerable during the waiting
period. A solution for this is to trap the memory regions that we want to monitor for access

or modification; this, however, can be detected by a knowledgeable adversary.

To solve this problem, LibVMI and altp2m, along with the substantial number of EPTs on
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the latest CPUs, were combined in DRAKVUF [4], a dynamic malware analysis platform.
One of DRAKVUF’s most significant key features is that it traps the memory addresses the
user wants to monitor for access. When an event gets triggered, the EPT with the trapped
address gets swapped with the original so that the execution of the guest VM continues. This
allows the monitoring of many user-determined memory addresses, providing notification
and response capabilities on every such event, while at the same time being untraceable

from inside the guest. We explain how this mechanism works in more depth in Section
3.5.4.

( ) The VMI application requests a kernel symbol. LibVMI
Dom0O looks up the symbol in the System Map. Then, it searches
L the Page Directory to find the correct Page Table. Once it
MI Appl
‘ v pplication ‘ finds the symbol in the Page Table, it reads the data and
1~ J, returns the value to the application.
. A
‘ LibVMI ‘ User VM (DomU)
PN J’ Co T T T T T ! Co T T T T T !
EWS”; o . Page . Page |
 System Directory ' Table ' . | ‘
! [— y w ! }
L {\{IE}}? o L lh) L lh) i Kernel
' Data |

Figure 2.8. Using LibVMI to access the value of a kernel symbol.
Source: [11].

2.3 System Calls

Modern OSs are responsible for allocating their resources efficiently and securely for them-
selves, as well as to the user-level applications. The part of the OS assigned to manage these
resources — like memory, hard disk drive access, or CPU time — is the kernel of the OS.
The kernel, which runs in its own space, is the heart of the OS that makes everything work
without conflicts; it also resolves any conflicts that arise. When an application is running,
it runs in the so-called “user space”. This distinction exists to prevent applications from
having direct access to the underlying hardware and is enforced with the protection rings,

as explained previously. The running application has no knowledge of any other applica-
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tion(s) being executed on the same machine, and whenever it requires a resource, it asks
the OS through the kernel. The kernel, on its behalf, accesses the hard disk drive, allocates
memory, or executes other commands that are considered privileged and the application
cannot execute. It handles all the low-level details of what the application requested and

returns the results of the action.

This very complicated software is the most crucial part of the OS. Therefore, not every
process can access the kernel directly or invoke all the kernel’s functions in order to avoid
corruption or misuse the low-level access the kernel has (i.e., to gain access where a process
should not). This limited interface to the kernel, a sort of protection mechanism, is called

a system call. The details of making a system call depend on the OS.

Programming with a high-level language usually does not involve making system calls
directly. Most languages have implemented wrappers for making a system call and simpli-
fying the system call interface. Regardless, the application will eventually have to make a
system call to access some of the system’s resources. One type of resource an application
needs to request access for from the OS is files. This is performed with the open () system
call. Access to input devices, such as a keyboard, is also requested from the OS with the

use of the read () system call.

2.4 Related Work

Whether resulting from user error or targeted malicious activity, system compromise is
inevitable because of errors in the running programs. This eventuality led researchers
to invest their resources in VM security space. The introspection concept gave birth to
numerous interesting solutions that target a more critical issue of the information world,
that of computer security. Some solutions focus on the analysis part by leveraging the
hypervisor’s introspection methods to gain better insight and understanding of the behavior
and impact of a malware so that it can be successfully intercepted. Other solutions take
more active roles by trying to protect crucial parts of a running VM. They prevent the kernel
from becoming corrupted or provide secure access to the parts of the memory where critical
information or applications are stored. Each of these solutions, in their own unique ways,
can provide valuable information on which events and actions led to a compromised system,

or protect the vital OS space from being corrupted by malicious activity. The following
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categories of methods of securing VM-based systems represent only some of the solutions

produced so far, and the categories are based on the work by Bauman et al. [12].

24.1 In-VM Monitoring

In-VM solutions implement part of the functionality inside the VM. They employ an inside
agent to gather information on the VM’s execution state and use the elevated privileges of the
hypervisor to protect the agent from corruption or subversion. Depending on the application,
we can further refine the classification in terms of detection and prevention. There are also
some recovery solutions, but we consider them outside the scope of this research. Working
in a VM to gather information for the hypervisor can become a very intensive task, resulting
in increased performance overhead. As with every VM, the hypervisor is a complete OS,
intercepting its own interrupts while running its processes, applications, and scheduler.
There is additional performance overhead when the execution switches between a VM and
the hypervisor and vice versa. The events related to hypervisor and VM switching are called
VM-exit and VM-entry (Figure 2.9). Having a monitoring and logging application on the
hypervisor triggers a considerable number of VM-exit events. This is a problem some of

the following solutions try to address by using different approaches.

[ Guest VM1 J { Guest VM2 J

Hypervisor

Figure 2.9. VM-exit and VM-entry events.

Detection

The hypervisor, since it provides all the resource allocation, can mark the memory pages
allocated to a VM differently than the guest OS would. It can mark a page read-only when
the OS marks it as read/write. This will trigger a VM-exit event and the hypervisor can

act according to a different policy than that of the VM’s OS. To prevent performance
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overhead, SIM [13], a monitoring solution, used the hypervisor in the following way: SIM
is placed inside the VM, monitoring the guest OS, but at the same time it is protected by
the hypervisor by being placed on a protected region of the VM’s address space.

Gathering information at the hypervisor level, though, presents a new problem. Each
action collected has the potential for having been executed by different processes. This
uncertainty makes it harder to understand the higher-level action being executed; it is a
semantic gap between the hypervisor and the guest VMs. Virtuoso [14] is a tool that tries
to bridge that semantic gap by automating the process of extracting OS kernel information
relevant to introspection. By running a helper program inside the VM, which yields the
wanted result(s), it analyzes the execution trace of that helper program and generates the
introspection code that will give the same result when executed from the hypervisor. This
method helps gain some knowledge about the machine’s internal state from the hypervisor’s

point of view without requiring the intricate knowledge of the OS.

Prevention

Lares [15], in the same manner, tried to modify the guest OS minimally so that the code used
for monitoring could be protected easily, while all the introspection and decision making
code was placed in a “security VM.” The two communicated through the hypervisor,
which protected the hooked code in the untrusted VM, while at the same time provided
information to the “security VM.” It also provided communication between the VMs, so
that the decision making from the “security VM” could be applied to the untrusted one.
In this situation, the monitoring happens during process creation, allowing or denying the

execution of programs as defined in a white list.

SHype [16] is a modified hypervisor that implements mandatory access control (MAC) on
shared resources between VMs. SHype is used also in Hay and Nance [17] to provide a more
fine-grained MAC on data flow between VMs and services. HyperLink [18] implements a
hybrid of protected in-VM monitoring and MAC-based hypervisor protection for guest VM

and hypervisor protection.

InkTag [19] introduces many different new concepts to run a high assurance process (HAP)
on an untrusted OS. The threat model for this approach is more advanced and sophisticated:

InkTag, to protect the HAP, employs many different mechanisms on various levels to ensure
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that there is no data leak or malicious intervention during the HAP’s runtime.

InkTag also introduces ‘“paraverification” [19], in which the kernel is required to perform
some extra tasks to provide the hypervisor high-level information about the process state.
This way, the hypervisor can easily determine the high-level effects of low-level actions.
Furthermore, the HAP does not interact directly with the kernel; this is done by an untrusted
trampoline code, which is responsible for making the system calls instead of the HAP. Upon
receiving the system call results from the OS and validating them, the untrusted code returns
them to the HAP.

To protect the contents of the HAPs’ memory address space, InkTag employs two EPTs:
one for use during untrusted execution, which is visible by the untrusted OS, and one for use
during trusted execution, which is only visible to and used by the hypervisor. In addition,
if a page from the HAP’s address space needs to be evicted, InkTag hashes the contents
and encrypts them before they get written on the disk. This way, it provides protection
against malicious modification and access. Also, to further protect the HAP and its files, a
different access control mechanism is used: each process and file is followed by attributes
that are used to enforce access policies. These will protect the files, the processes, and their
spawned processes. To address memory and files, InkTag also uses a different convention;
the use of object identifiers (OI), an internal representation visible and known only to the
HAP and the hypervisor. These are used to define the permissions available to each HAP.
Finally, to provide crash consistency InkTag modifies the actual media layout by injecting
file metadata. These metadata are not visible to the untrusted OS, since these sectors are

not included in the media view of the OS.

Although InkTag provides many assurances for the secure execution of a HAP, the need
to re-compile applications so that they can run securely poses a significant drawback and

compromise of usability.

Using a similar approach, Overshadow [20] provides a one-to-many memory mapping from
the VM to physical memory, as well as other mechanisms to further protect the applications
and their data. The actual data in memory depend on the process(es) trying to access them.
The contents get encrypted and hashed for untrusted processes and decrypted when a trusted

application tries to access them.
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To manage a secure application execution inside a compromised OS, Haven [21] takes
a different approach. To protect the application, Haven employs Intel’s software guard
extensions (SGX). SGX allow a process to define a secure region of an address space,
called an enclave. Haven puts the whole application in an enclave and uses an in-enclave
library OS for the interactions with the OS.

Unfortunately, these solutions are not foolproof. InkTag and Haven were attacked in Xu et
al. [22] with the use of controlled-channel attacks, resulting in the extraction of substantial
amounts of sensitive information from protected applications. Complete text documents
were extracted, as well as outlines of JPEG images, showing that data protection during a

process is not an insignificant task.

2.4.2 Out-VM Monitoring

Having a monitoring tool reside completely on the hypervisor has its benefits, but is also a
significant drawback. Although everything is visible from the hypervisor’s perspective, it is
extremely difficult to understand the context of the data collected by analyzing memory and
CPU register values during every execution cycle, a semantic gap that needs to be filled.
This section presents some of the out-VM solutions: some work on raw collected data,
while others try to bridge the semantic gap to better understand the high-level commands

being executed in the VM.

Detection

ReVirt [23] is a logging application that uses the hypervisor’s VM access to create extensive
logs of a VM’s execution. Since the hypervisor has unlimited access to the state of the VM,
ReVirt can collect and record enough information to be able to re-create and simulate the
execution of the target machine. This can be very valuable for collecting malware activity
data even after the system has been compromised, hijacked, or even replaced. The replay
data can prove very useful in the malware analysis field, as every non-deterministic action
of a malware is recorded and deterministic results can be recreated, providing a full view

of the system and the malware’s impact at every step of the malicious activity.

From the moment the VM starts booting, the solution in Macko et al. [24] uses the ability of

the hypervisor to transparently access the running VM’s internal state to collect system-level
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provenance.

Using a different approach, Crawford and Peterson [25] implement a mechanism to detect
insider threats, using VMI to stealthily monitor the users’ actions and detect suspicious
activity that correlates to an insider threat. Although this alert mechanism is very useful,
especially due to its transparency, the attacker still gets access to the information sought

after.

When the introspection idea was conceived by Garfinkel et al. [2], it was utilized to create a
hybrid intrusion detection system (IDS). The IDS solution combined the best of both worlds,
a host intrusion detection system (HIDS) and a network intrusion detection system (NIDS),
by being placed on the hypervisor. Since it is placed outside the VM, the IDS solution has
the advantage of not being prone to detection, attack and corruption, or evasion. It can
directly monitor the network traffic, given that the network interface card (NIC) is a common
shared resource. On the other hand, by having the hypervisor’s introspection capability, it

can act also as a HIDS by monitoring the actual system behavior and execution.

Other solutions, like Strider Ghostbuster [26], PoKeR [27], and VMWatcher [28], have
been proposed to fill the semantic gap between the hypervisor and the guest VM. All of
them employ different techniques, but unfortunately, as later researchers like Mahapatra and
Selvakumar [29] mention, they all fail at some point because this semantic gap is difficult

to bridge.

Prevention

This semantic gap was also addressed in Srinivasan et al. [30] with a technique called
process out-grafting. Instead of monitoring the VM as a whole, this method focuses on
each separate process for fine-grained execution monitoring and is done by implementing
two new techniques. The first is called on-demand grafting, which can relocate a running
process from the guest target VM to a security VM. This effectively bridges the semantic
gap, as, for all intents and purposes, the process is running on the same system as the
monitor. This way, the monitor can intercept all instructions executed by the suspicious
process without the need of hypervisor intervention. The second technique, called split
execution, makes a logical separation on the execution of instructions. If the process runs

in user space, it continues to run on the security VM. When there is a kernel request, like a
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system call, it executes that instruction on the target VM. Since they do not run on the same
kernel, this technique isolates the monitor from the suspicious process; it is still running

inside the target VM, from the suspect’s process perspective.

Furthermore, SecVisor [31] and HUKO [32] propose a kernel integrity method that protects
the kernel against rootkit code injection. In this case, SecVisor and HUKO are part of the
hypervisor. They permit user-allowed code execution, while at the same time preventing

malicious code execution.

In [33], Sentry provides a more granular kernel protection by preventing low-trust kernel
components from altering security-critical data used by the kernel to manage itself and the
system. It protects dynamically allocated memory, is isolated from the untrusted kernel by
running on the Hypervisor, and reduces the overhead by monitoring only the kernel-related

memory pages for suspicious activity.

With Paladin, Baliga et al. [34] first introduced the concept of an Out-of-Guest ACL.
The ACLs in this case have a rule-based system that marks whole folders or files with
generic permissions. In this case, “generic permissions” means that they affect all users
and groups in the same way; there is no user or group-specific ruling and all file accesses
fall in the same category. Therefore, Paladin provides its file security at a coarser level
than the one desired. Additionally, it uses an in-guest module that, although relatively
small and protected, still runs in the guest VM. Also, as stated in Baliga et al. [34], this
ACL implementation introduces many usability problems, like trying to upgrade running
applications. To perform such an action the system must be taken offline, its ACL rules
must be changed to perform the upgrade, and then the system’s online presence must be

restored.

A more direct approach to file integrity is presented in [35] with Nasab trying to protect the
OS from accessing maliciously modified files. The target VM is deployed offline and all the
files are signed digitally using a private key; the digests are then stored on the hypervisor.
When the process has been completed for all the files to be protected, the VM returns to
online status. During its execution, whenever a file is accessed but before it gets loaded
into memory, the system retrieves its digest and compares it to the copy on the hypervisor.
If the file has not changed, access or execution continues; otherwise, access or execution is

denied.
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Table 2.1 shows a representation of the key features of the solutions presented.

Table 2.1. Overview of solutions.

(01 File Protection
Solution In-VM  Out-VM  Detection Prevention Detection  Prevention
SIM [13] v - v - - -
Virtuoso [14] Vv - v
Lares [15] v
SHype [16] v -

v

v

v

InkTag [19]

Overshadow [20]
Haven [21]

ReVirt [23] -
Macko et al. [24] -
Crawford and Peterson [25] -
VMI [2] -
Strider Ghostbuster [26] -
PoKeR [27] -
VMWatcher [28] -
Srinivasan et al. [30] -
SecVisor [31] -
HUKO [32] -
Sentry [33] -
Nasab [35] -
Paladin [34] v
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As best as we could determine, all work on VM monitoring and security focuses on kernel
and OS protection, malicious activity monitoring, extensive logging for replay and online
or offline forensic purposes, or secure resource-sharing among VMs. Only Paladin [34]
provides protection for the actual files of the system. Even this solution, as mentioned before,
provides a generic out-VM ACL approach and can introduce various usability issues. Also,
it will need further development to protect against newly created attacks that can maliciously
access files when the VM has been compromised. Furthermore, it is an in-VM solution, as
there is code of Paladin running in the guestVM, thereby leaving a footprint of its presence.
VM security is a very active research field that has produced many solutions, each with
a different focus, but generally surrounding the malware protection realm, as depicted in

Table 2.1 and even more extensively in Bauman et al. [12].6

Because zero-day vulnerabilities are constantly discovered and exploited, we do not want

to focus on detecting specific behaviors to assess the presence of malware and methods to

6Bauman et al. [12] is an extensive survey of hypervisor-based solutions.
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restrain it, since these behaviors change and evolve with the development of new attacks.
We do want to focus on a more generic case where we expect the running system to be

hacked and can protect files in a compromised running VM against insider threats, rootkits,
and malware in general.
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CHAPTER 3:

Design and Implementation of Ferity

In this chapter, we discuss the design and the implementation choices that we made for this

research, including the threat model and assumptions made.

3.1 Overview

In this research, we extended the Xen hypervisor by leveraging its VMI capabilities to
create a system, which we called ferify. Ferify protects critical files on a VM’s
mounted filesystem by intercepting and monitoring all systems calls that may operate on
these files. It maintains its own file ACLs and allows a system call to read or write a file if,
and only if, the ACL permits the action explicitly for the userID (UID) and groupID (GID)
combination of the calling process. We call this ACL the SACL to differentiate it from other
ACLs configured on guest VMs. It is important to note that the content of the SACL cannot
be read nor modified by any process, including kernel processes from guest VMs. The
aforementioned permissions can be different compared to those on the guest VM, allowing
for the enforcement of different file access policies than the ones enforced by the guest VM,
even while under VM-compromised attacks. The ACL policies enforced by the guest OS
remain active, meaning that if for some reason the SACL entry allows file access, but the
guest OS ACL does not, the file will not be accessed.

First, before presenting the design and implementation details, we briefly discuss why our
solution is secure: we choose to monitor which files were being accessed by trapping the

system calls that are being invoked.

As mentioned in [36], a User Mode process cannot directly access the hardware; each file
operation must be performed in Kernel Mode as the OS will not allow direct access to
hardware. If a process needs file access, it must perform a system call, asking the OS in this
way for the desired operation. The OS checks if the request is valid and, if it is, accesses the
file on behalf of the process and returns the result of the operations to the process, as shown
in Figure 3.1. This requirement of making a system call for all file operations provides a

place in the OS executable code, which, if we monitor, we can extract the information of all
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files being accessed. So, we cannot miss any file that any process tries to open.

Process
File access request TResults to the process
= h 4
5; System Call
< x
& Request to the OS
(¢]
7 Results from OS
= N>
=
(¢
g Kernel
&  Request granted T Results from device
N>
Device

Figure 3.1. System call information flow.

Table 12.1 in [36] shows the list of system calls relevant to filesystems. According to that
table, the system calls of importance to us are open (), rename (), link (), symlink (),
unlink (),and truncate (). Some of these system calls have evolved over time to provide
better security and to eliminate problems. Such an evolved system call is openat (). Going
through the available system call list in /usr/include/asm/unistd_64.h, we assess
that the system calls mentioned in Table 3.1,7 provide full coverage of the possible ways a

file can be accessed when being on a mounted device.

As explained in [37], it is possible for an attacker to modify the credentials of a process
after acquiring root privileges. This exploit is a significant security issue for ferify,
since it collects the UID and GID of the running process from the VM’s kernel memory.
To avoid the success of such an exploit, ferify monitors the credentials of all running
processes inside the guest VM, and monitors the creation of new processes to record their
credentials as well. Then, according to preset rules, ferify decides whether a change in
the credentials of a process is allowed or not and acts accordingly. This way, we can secure

the validity of the information collected from the guest VM.

7The column “Number” in Table 3.1 represents the system call number as it is passed to the kernel.
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Table 3.1. Trapped system calls related to file operations.

System call Number System call Number
open () 2 openat () 257
name_to_handle_at () 303 open_by_handle_at () 304
rename () 82 renameat () 264
renameat2 () 316 truncate () 76
link () 86 linkat () 265
symlink () 88 symlinkat () 266
unlink () 87 unlinkat () 263
execve () 59 execveat () 322

LibVMI, and therefore DRAKVUF, needs for the guest VM to have reached a state, after
launching, in which it is able to start monitoring the guest VM. After we launch a VM there
might be a small time window in which the guest VM is running without the protection of
our system. Until we find a way to determine the exact amount of time in which LibVMI
can be initialized to protect the guest VM, we will consider attacks that modify the running
system during boot time outside the scope of this research. To prevent the system from
being attacked during that small time frame, we do not connect the VM to the network until

after this initialization process is completed.

3.2 Threat Model

Computer security has been evolving because the attackers’ methods evolve, too. Modern
OSes and applications are so complex that they inevitably introduce many bugs in their code.
Some of these bugs are benign, but some are serious enough to allow security breaches like

remote access to a system, administrator/root access, or arbitrary code execution.

For this research, we have adopted a moderate threat model where we assume that the guest
VM is insecure. We assume that physical access to the hosting machine is restricted and
the attacker cannot use physical media like USB sticks or CD-ROMs to compromise the
host system. The protected files are only remotely accessible and protected by a public-key
authentication and encryption scheme (i.e., SSH). The private keys of authorized users are
secure, while the attacker may have obtained root privileges on the VM through a successful
attack. The assumption that the target VM would only be accessible remotely reflects many

applications and systems working over a network connection as well as cloud solutions.
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A significant concern in computer security is that of replay attacks. Even if a legitimate
user connects using SSH, there are attacks that can monitor network traffic on the host and
steal sensitive data after they are decrypted. We consider these types of attacks and how
to mitigate them outside the scope of this research, as the SSH protocol is widely used and

evolving. Finally, the files we want to protect are on a mounted disk.

Moreover, we assume that the OS installed on the guest VM is not trusted. This essentially
means that the adversaries could gain root privileges, allowing them to modify system
executables this way, as well as load kernel modules during runtime. This allows for kernel

memory modification.

We consider the hypervisor, along with its Dom0, to be secure and trusted; hypervisor

vectored attacks or how to protect the hypervisor is outside the scope of this research.

3.3 Requirements
The goal of this research is to provide a virtualization extension that will extend the granular-
level file access control of the Linux OS. The requirements we have defined for our system

are:

* (R1) The solution must be out-VM to avoid modification from the potential adversary.

* (R2) The system must remain efficient and usable by not introducing significant
overhead on the runtime of the VM, as well as by not enforcing many restrictions to
the users.

* (R3) All relevant system calls must be monitored.

3.4 Design

We used a type-I hypervisor, as this type is more efficient and deployed more often as
commercial solutions, instead of type-1I, which is used mostly for testing and analysis. We
chose the Xen hypervisor as it is open-source and is used widely, so the results of the research
can be used in a variety of applications. By leveraging Xen’s introspection methods, we
created an Out-VM monitoring agent,® completely outside the VM, conforming this way

with (R1). Also, by ensuring that there is no code running on the guest OS, we have

80ut-VM means that the agent runs on DomoO.
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increased the deployment speed, as there is no need to modify the guest VM in any way.
The required pre-deployment configuration for the guest VM is kept to a minimum and does

not involve any modification, only data collection for building the SACLs.

As a platform on which to base our solution, we chose DRAKVUF [4]. DRAKVUF
provided us with a stealthy monitoring base, as it leverages alternate EPTs with different
permissions, thus preventing any detection from applications inside a VM. As explained
later in this chapter, we had to restrict some of the usability of the system, although not
during normal execution, to achieve the file confidentiality, integrity, and availability we
wanted. Therefore, we assumed that (R2) is achieved in the part of restrictions, although
a few restrictions apply, mostly concerning the root user. Overhead and usability of the

system is discussed in Chapter 4.

Generally, we wanted to protect any type of data, regardless of the content. We employed the
stealthy property of DRAKVUF to make the process of file protection completely transparent
to the guest OS, retaining a zero-footprint monitor on the guest. By having access to selected
kernel structures, DRAKVUF also helps bridge the semantic gap between the hypervisor
and the VM with the use of a Rekall profile [38]. Furthermore, we wanted to employ a
per-user ACL, to be enforced on specific files or whole folders; these are not always essential
to the OS, but are essential to the user. We improved confidentiality by denying read access,
integrity by denying write, and availability by protecting deletion or moving of files. Since
our threat model assumes that the system is compromised, this mechanism must also extend
to the root user. To achieve that, we intercept all relevant system calls from all users and

verify the validity of the request.

Monitoring the execution of the system calls in Table 3.1 and validating the request made
to the guest OS kernel is sufficient for ensuring the guest VM file confidentiality, integrity,

and availability as we want to enforce it, thus conforming to (R3).

3.5 Implementation
In the following discussion, we expand on how we implemented the mechanism to provide

the file access security of our system.
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3.5.1 Architecture

We developed ferify as a plugin for DRAKVUEF. As such, it is a C++ class that ex-
tends the class plugin, as per requirements of DRAKVUF. It is located in the directory
src/plugins/ferify/ and consists of two files, ferify.hand ferify.cpp, as shown
in Figure 3.2.

. . ferify.h
‘ drakvuf/ H src/ ’—" plugins/ H ferify/ Kferjfy,cpp

Figure 3.2. ferify directory tree.

3.5.2 Shadow Access Control List

During the initialization of our DRAKVUF plugin, we read the SACLs we had created for
the VM to be protected. The SACLs are implemented in the form of hash tables in order
to improve search speed. The key of the hash table is the full pathname of the file and
the value is a structure, depicted in Table 3.2, used to store the rest of each SACL entry’s

information.

Variable Name Variable type

pathname char *
mode unsigned int

u uid_t

g gid_t

Table 3.2. struct protected_files memory layout.

The memory structure shown in Table 3.2 is used for both protected folders and protected
files, as they are handled the same. Moreover, we create two; one for the root user and
one for the rest. Searching in the SACLs is performed with the pathname of the file being

accessed as the hash-table key. The return value is a pointer to the structure of Table 3.2.

In the SACL file, permissions are set according to the Linux permission bits schema. This
means that the last three digits of the mode field, when encoded in octal form, define the
permissions we want to enforce. The first digit defines the owner permissions, the second
the group permissions, and the third the other user permissions. The number itself is the

sum of the permissions: 4 for read, 2 for write, and 1 for execute. As an example, if we
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encounter or set permissions 744, it means that the owner can read, write, and execute the

file; everyone else can only read the file.

The SACL’s format was kept as simple as possible so that editing and reviewing it is easy.
Additionally, by keeping the format of the Linux ACL, we provide the system administrator
with a familiar permissions schema so it is easier to understand and manage. Figure 3.3

shows an example, which we analyze later.

Pathname Permissions User Group
/home/user/Documents/readme.txt 100644 1000 1000
/home/user/Desktop/credit.pdf 100400 1000 1000
/home/user/Documents 140220 0 0

Figure 3.3. SACL sample.

The system keeps two SACLs: one for all non-root users and one for root, since this account
is of greater significance. Furthermore, two different checks are performed. First, ferify
checks for a protected folder, or a parent, as this is a more generic case. If no entry is found,

it then checks for specific files that match those in the list.

We chose to create two separate SACLs to improve the permissions policy of our solution.
By making this separation we allow for the creation of separate permissions for normal
users and the root user. It makes managing of different permissions easier. Besides this
simple refinement of the SACL entries, the level of protection applied to the files is the

same for any user.

As we see in Figure 3.4, the SACL for protecting files from the root user is simpler. Since
it is targeted for this specific user, we do not need the entries for the owner or group.
Furthermore, the permission bits for group and others are ignored when parsed, since they

are meaningless.

Pathname Permissions
/etc/shadow 100400
/etc/pam.d/su 100000

Figure 3.4. root user SACL sample.

Before moving on, we must emphasize that the system does not alter basic properties of

the files that are being protected, nor does it change the owner or the group, since this
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requires intervention in the VM. Although in the SACL we can define a different owner,
the generic effect is denial of access. This means that we cannot change who can access
a file; rather, we can change who cannot. This system acts as a supplementary and more
refined access control mechanism to make more strict file access policies. Therefore, if we
change the owner of a file in the SACL, we essentially prohibit access to that file by the
owner. Similarly, we do specify a new one, as the final call for file access comes from the

unmodified guest OS.

3.5.3 System Call Interception and Admission Control

All applications running in user space need to ask the kernel to access a file. Applications
do not have knowledge of the low-level OS and device details to access the files they need,
so they request the kernel to do that work for them. The kernel accesses the requested file
using the device drivers and, when the operation is completed, returns to the application a
handle to that file.® This happens for many operations restricted to the kernel for security
reasons. Also, it provides an abstraction to the applications, which are written without the
need for knowledge of device specifics, and works on variations of the underlying hardware

running the same OS.

For applications to be compatible with OS version upgrades and portable between different
systems, a specific standard calling convention of these kernel functions is needed. This
calling convention is a system call. System calls are specific entry points to the kernel which,
when provided specific arguments, perform an operation on behalf of the application. Many
system calls exist, each performing a different operation. We focus on those that are relevant

to accessing files, whether to read or modify. These are depicted in Table 3.1.

To gain the insight needed on what files are being accessed, we need to know whenever this
event happens. We will use DRAKVUF to create a trap on all the aforementioned system
calls; this gives us the opportunity to stop the VM execution when these system calls are
made. At this point, we will access the registers related with each system call to retrieve
the information we need to perform the validation of the requested call. Figure 3.5 gives an

overview of the flow of information during a trapped system call.

The arguments for the system calls for the 64-bit Linux OS we used as our test platform

9The handle to the file is called the file descriptor.
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are passed to the kernel through the registers in the order of rdi, rsi, rdx, r10, r8, and
r9, while the system call number is passed in rax. Additionally, rcx holds the return
address for execution after the system call has been completed. Table 3.3 shows which
arguments need to be passed to each system call on each register for it to perform the

requested operation, as found online [39].

Table 3.3. Arguments of file related trapped system calls.

Syscall Name rax rdi rsi rdx rl0 r8
open 2 const char int int
*pathname flags mode
openat 257 int const char int int
dirfd *pathname flags mode
name_to_handle_at 303 int const char struct int int
dirfd *pathname file_handle mount_id flags
*handle
open_by_handle_at 304 int struct int
mount fd file_handle flags
*handle
rename 82 const char const char
*oldpath *newpath
renameat 264 int const char int const char
olddirfd *oldpath newdirfd *newpath
renameat?2 316 int const char int const char int
olddirfd *oldpath newdirfd *newpath flags
link 86 const char const char
*oldpath *newpath
linkat 265 int const char int const char int
olddirfd *oldpath newdirfd *newpath flags
symlink 88 const char const char
*oldpath *newpath
symlinkat 266 const char int const char
*oldpath newdirfd *newpath
unlink 87 const char
*pathname
unlinkat 263 int const char int
dirfd *pathname flag
truncate 76 const char off_t int
*pathname length flag
execve 59 const char char *const char *const
*filename argv([] envp[]
execveat 322 int const char char *const char *const int
dirfd *pathname argv([] envp (] flags
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Figure 3.5. Information flow during a trapped system call execution.

3.5.4 System Call Hooking

To achieve the aforementioned system call intercept, we need to place traps to the system
calls of interest. These get implemented by DRAKVUF; LibVMI reads the Rekall profile
of the guest VM to get the base address of the kernel symbol table. DRAKVUF then starts
from that base address and searches for the system call table. This table includes the function
pointers for all supported system calls. Going through that table makes the detection and
trapping of system calls possible. This is achieved by reading the address of the system call
from the system call table, going to that address, and placing the INT3 (0xCC) byte at the
beginning of the system call function. This does not alter the system call table; the system
call table is stored information, while the injected byte is written in the actual code section.
This byte is executed by the CPU as a debugging interrupt or a breakpoint. This in turn
triggers a VM-exit, which is caught by DRAKVUF and handled by our callback function.
DRAKVUF implements multiple EPTs with different permissions for the same page; this
allows placing the trap in the system calls code. When the particular page is accessed for
reading, an exception is raised, which is caught by the hypervisor. While the VM is paused
the hypervisor switches the page with the correct one and resumes the VM. When the
OS tries to execute that part of code the opposite switch happens. The original function’s

code is accessed, without revealing the injected breakpoint. This process is transparent to
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the VM because the contents of the pages are exactly the same, with the exception of the

breakpoint, and all this happens when the VM is paused.

Table 3.3 shows that there are two generic cases we need to examine. One case is for the
open (), rename (), link (), symlink (), unlink (), and truncate () system calls,
where we have to find the string pointed by the pointer in the rdi register, and in the rsi

register in the case of rename ().

The second case is for the openat (), renameat (), renameat2(), linkat (),
symlinkat (), and unlinkat () system calls, where we have to retrieve the string of

the file being accessed from different registers, according to Table 3.3.

3.5.5 The task_struct Kernel Structure

A crucial part in the design of our solution is the Linux kernel task_struct. Itis a
complex structure where the kernel stores extensive information concerning the running
processes. Each running process is assigned one such structure by the kernel, so that the
kernel can monitor the process and retrieve various information about it. A special macro,
current, retrieves a pointer to the task_struct of the currently running process.!° We
then need to map this structure and find the address offsets of the information we need. We
must make sure that the information we retrieve from the task_struct is not corrupted,
so we store the required information on the hypervisor, keeping track of all the processes.
Additionally, to prevent a big attack surface on the kernel we decide to deny kernel module
loading, as explained in detail in Subsection 4.1.2. We revisit the task_struct in the next

sections, as we mention what we need to access.

Although normally this process is not complex, in our case there were some challenges,
such as the semantic gap already mentioned for all out-VM solutions. The first is that we
need to find the correct offsets inside the task_struct for the entries we want, which
depend on the kernel version. Furthermore, we need to make constant conversions between
GMFN and MFN, as the memory values we retrieve correspond to the VMs address space.

Instead, we need to access the actual physical memory to read the information we require.

10The value is the return value of a function. Manipulating this value has no result, as each time it is called
the correct value is always returned.
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3.5.6 Trap Handling

After ahooked system call gets executed, our callback function is called. We retrieve the file
that is being accessed and, by getting the current process ID (Figure 3.6), we determine
which process is making the system call.

currpid = vmi_dtb_to_pid(vmi, info->regs-—->cr3) ;
switch (info->regs—->rax) {
case S_OPEN:
case S_RENAME:
case S_UNLINK:
addr=vmi_translate_uv2p (vmi, info->regs—>rdi, currpid) ;
filename=vmi_read_str_pa (vmi, addr) ;

break;

case S_OPENAT:

case S_UNLINKAT:

case S_RENAMEAT:

case S_RENAMEAT2:
addr=vmi_translate_uv2p (vmi, info->regs—->rsi, currpid) ;
filename=vmi_read_str_pa (vmi, addr) ;

break;

Figure 3.6. Getting the file being accessed.

When a system call is executed, the file being accessed is passed as a string pointer. After
we retrieve the string, we check whether the file is given in the form of an absolute or relative
path. If the path is absolute there is nothing more to do and the algorithm continues. If the
path is relative, the retrieval procedure is more complicated because we need to recreate
the present working directory (PWD). The Linux kernel does not store this information
anywhere. On the contrary, in the task_struct, the kernel only stores the parent directory
in a different structure. Therefore, we need to loop through the parent folders so that by
prepending the parent each time, we recreate the PWD and the full pathname. To achieve
this, we created a new function that recursively walks though the task_struct to collect

all the required information.

The case for the openat (), renameat (), renameat2 (), linkat (), symlinkat (),

and unlinkat () system calls is different. Among the arguments, there is one called
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dirfd. This argument is not always used. When it is not, the algorithm is the same as
described previously. When it is used, it is in the form of a directory descriptor. This means
that the process has already successfully opened a directory and passed its descriptor as an
argument, which represents the mount directory for the file. In this case we go through the
task_struct structure of the current running process and retrieve the directory that maps

to the directory descriptor, so that we can recreate the pathname of the file.

After we have retrieved the pathname, we then check for the system call that triggered the
VM-exit event. For this research, we will not handle the name_to_handle_at () and
open_by_handle_at () system calls. At this point, we are unaware of any compiled
program that uses this specific system call, but this does not hinder our proof of concept.
Support for them can be added in the future. The rest of the system calls are handled as

follows:

e 1ink (), linkat (), symlink (), symlinkat (), unlink (), and unlinkat ()
e open () and openat ()

* rename (), renameat (), and renameat?2 ()

In the first case, where the system calls are used for linking and file deletion, the procedure is
straightforward. If there is an entry in the SACL, we verify that the user or group accessing
the file has sufficient permissions. If that is correct, the callback function returns control to
the VM to resume execution. If the permissions do not match, the pointer to the filename
string is modified to NULL so that the system call, after the VM resumes execution, fails
(Figure 3.7). By hooking and preventing execution of these system calls, we prevent deletion
and linking of the protected files, improving the availability and confidentiality assurances

of the underlying OS.

The search for a match in the SACLs is performed in two steps for all cases: once to go
through protected folders and once to go through individually protected files. Also, the
root user is handled separately from the rest of the users because of the special elevated

privileges that account is granted.

In the case of rename (), renameat () and renameat?2 (), which are used for file moving,
we perform the same check as per unlink () and unlinkat (), with the difference that

if we do not find a match for the ol1dname of the system call, we additionally check for
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a match on the newname. As enforced by our SACL, the first part ensures that if the
user or group does not have read permissions, the file cannot be renamed or moved to an
unprotected folder or filename, ensuring the confidentiality of the information stored in the
file. In the second case, we prevent the protected file from being overwritten by another file
if the permissions are not correct. This way, we improve integrity of the underlying OS by

preventing modification of the protected file.

case S_UNLINK:
case S_UNLINKAT:
switch (info—->userid) {
case ROOT: // root user
if (strcmp (check—->pathname, filename) ==0) {
check_permissions (check, info, vmi, ROOT)

!

break;

default: // other users
if (strcmp (check—->pathname, filename) ==0) {
if (check—->u == info->userid) {
check_permissions (check, info, vmi, USER) ;}
else if (check—->g == info->groupid) {
check_permissions (check, info, vmi, GROUP) ;}
else {

check_permissions (check, info, vmi, OTHER) ;}

break;

Figure 3.7. unlink() and unlinkat() skeleton code flow.

Finally, in the case of open () and openat () we only must check for one filename in our
SACLs. If there is an entry, then the permission check algorithm is more complicated.
This happens because we have to match the requested access mode with the permissions we
want to enforce. So, we check for read permission when a O_RDONLY access is requested,
and for write permission on a O_WRONLY. In the case of a O_RDWR request, we initially
check for both permissions. If that fails, we then check if the process user or group has
read permissions. If that is the case, we alter the file access mode to read-only and allow
execution. If all of them fail, we change the rax register contents to NULL and resume

VM execution; this results in a failed system call. This more complex permission check
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improves confidentiality by not allowing read access to those who do not have the right, as
well as integrity and availability by denying write access to those who cannot write to the
file, as per the SACL-enforced policy. Figure 3.8 shows the code for the permission checks
done in the case of the open () and openat () system calls.

switch (info—->regs—->rax) {
case S_OPEN:
case S_OPENAT:

if ( ((info—->regs—>rsi & 07) | O_RDONLY) == O_RDONLY) {
if ( !(check—->mode & r) ) {
vmi_set_vcpureg (vmi, 0, RDI, info->vcpu) ;
return 1; }
} else if ( ((info->regs—->rsi & 07) | O_WRONLY) ==
O_WRONLY) {
if ( !(check—->mode & w) ) {
vmi_set_vcpureg (vmi, O, RDI, info->vcpu) ;
return 1; }
} else if ( ((info->regs—->rsi & 07) | O_RDWR) ==
O_RDWR) {
if ( !(check—->mode & w) && ! (check—->mode & r) ) {
vmi_set_vcpureg (vmi, O, RDI, info->vcpu) ;
return 1;
} else if ( !(check—->mode & w) ) {
vmi_set_vcpureg (vmi, 0, RSI, info->vcpu) ;

return 1; }

}

break;

Figure 3.8. open() and openat() permission checks.

When one of the trapped system calls gets executed, LibVMI pauses the VM execution. It
then passes the VM’s state information to DRAKVUF, where our running plug-in retrieves
it. Being unable to bypass and alter the VM’s state, at this point the guest OS is paused and
none of its processes continue running. By going through some VM memory accesses, the
plug-in gets the file being accessed, the UID, and the GID. With this information, it goes
through the SACL to find any matching files or folders that are being protected. If none are
found, it returns control to LibVMI, which then resumes the VM’s execution. If an entry in
the SACL is found, then the plug-in checks whether the requested file access is prohibited.
If it is allowed, execution continues normally. On the other hand, if it is prohibited, then

the plug-in changes the value of some registers related to the system call so that it will fail.
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3.6 Monitoring of Program Execution

In addition to the system calls of Table 3.1, we also trapped the execve () and execveat ()
system calls. Following the technique described in 3.5.6, we retrieve the pathname of the
program that is requested to be executed. We then check the permissions stored in the

SACLs and decide on allowing execution or not.

Instead of just checking the SACL permissions, we immediately deny execution if the file
is not in the SACL. This creates an efficient application white-list monitoring tool that can
mitigate a broad variety of viruses and malware in general. The reason for this is that most
of the malware will save its code on a file for later use. When it tries to execute this file,
since it is not part of the original filesystem, execution will stop. We must note that for a
malware to create a persistence mechanism on a compromised system, it must write its code
on a file. By write protecting the already present executable files, and denying execution
of new files, we mitigate a significant volume of old and new malware, including zero-day

attacks.

3.7 Guest VM Configuration

As mentioned before, there is no significant setup in the guest VM in order for our system to
run. The only requirement coming from LibVMI and DRAKVUF is the creation and export
of a Rekall profile in the guest VM. Because this profile depends on the kernel version that

is running, it is imperative to recreate the profile in the case of a kernel version update.

To prevent the VM from running unprotected in such a case, we have set the options in
the Xen guest configuration file, which resides on the hypervisor, to shut down the VM
in case it needs to reboot, as shown in Figure 3.9. This does not significantly affect the
usability of the guest system as the Linux OS seldom requires a reboot even after software
updates. Additionally, we trap and deny the kexec_load () system call, which is used to
load a new kernel to be used during the next boot sequence. These two steps protect against
custom-built kernels, created by attackers, since the VM will not run unsupervised, and will
not allow the loading of a new kernel. The administrator will need to investigate further to

determine why the VM was rebooted or powered off in the first place.

To support file confidentiality, integrity, and availability even from root access, we need to
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prohibit the root user from executing the su command. This command, short for switch
user, allows the root user to switch to any account in the OS. To do that, we need to edit
a configuration file so that the execution of this command is not allowed. Our test VM
uses the pluggable authentication module (PAM). To achieve the required result, we edited
the /etc/pam.d/su file in the guest OS by adding the line shown in Figure 3.10, and
then denied the write permissions of all users for that file in the SACL so that it cannot be
modified.

on_poweroff = "destroy"
on_reboot = "destroy"
on_crash = "destroy"

Figure 3.9. Guest VM shutdown configuration line.

Furthermore, since the root user can change other user passwords, we also need to deny
that capability. To do that, we do not need any special in-VM configuration; we just need to
protect the /etc/shadow file from being modified. Therefore, a sample SACL to enforce

these minimum security requirements we have set is shown in Figure 3.4.

auth required pam_wheel.so deny group=root

Figure 3.10. Guest VM configuration to deny root from running su.

In conclusion, we have seen that we make no alterations at all at the guest VM; we only
modify configuration files in order to set up the appropriate environment. Concerning
usability, the only things we have restricted are the ability of the root user to change the
password of any other user, and the capability of the root user to switch to any other user.
This can be troublesome in the event that a user has forgotten his password, but we assess

it as an acceptable usability limitation.
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CHAPTER 4

Evaluation

In this chapter, we present the evaluation of ferify. In the first section, we validate our
design of ferify. Next, we explain the tests we performed to verify that ferify has
the results we expected. These tests covered typical use cases in which ferify can be
employed. Finally we perform some tests to evaluate the performance overhead and the

degree to which our solution impacts overall system usability.

4.1 Validation

In Section 3.1 we discussed why ferify is secure. To expand on this and confirm that
our claim is correct, we will present the security challenges we identified and tried to
solve during the implementation of ferify. We can classify them by the permission level

required to perform certain malicious operations on the running OS.

4.1.1 Ring 3 Operations
The ring 3 operations include all the actions an attacker can perform in the user space.
Assuming that the attacker has gained root access, these actions include modification of

system configuration files and executables to serve certain purposes for the attacker.

The ferify process can be employed to overcome the challenge of how to protect the OS
at the ring 3 level from a malicious root user. By adding critical system files in the SACLs
along with the correct permissions, we can deny write access to any user, including the root
user. Depending on the security risk that is anticipated, the administrator must decide which
files are critical. To ensure some of our assumptions, a few basic files we assessed needed
protection are /etc/passwd, /etc/shadow, /etc/pam.d/su. Tests for these cases

are covered in the next section.

4.1.2 Ring 0 Operations
File operations are performed by the kernel through system calls. The kernel can be modified

only by the root user and, therefore, kernel memory can be accessed only while operating
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in ring 0 in the following ways:

* System calls
» Kernel modules
* Kernel compilation and loading

» Kernel bugs

Generally, the system call API is well defined and difficult to exploit. System call attacks
usually target the system call table to modify the address of the system call functions with
others of the attacker’s choosing. However, to do that the attacker needs to be able to load
kernel modules. So, this type of attack already falls into the second category, that of the

kernel modules.

Everything is within reach when an attacker manages to load a kernel module. The module
is running as part of the kernel, in ring 0, and has access to every physical and virtual
resource available on the system. Kernel modules have access to and are able to modify
all kernel functions and structures. There are protection mechanisms, like module digital
signing, but all these checks are running on the same privilege level. To protect the guest
OS from that category of attacks, which can also result in the installation of root-kits, we
trap and block the init_mod () and finit_mod () system calls; by blocking the use of

kernel module system calls we make module loading impossible.

To protect against a modified kernel, we took a simple approach that is easily implemented
with ferify: initially we blocked the system call kexec_load ().!! In addition to that,
we can detect the kernel files that are used to boot the system and write-protect them from all
users. Also, in case of a reboot, the configuration will shut down the VM, so automatically
running on a modified kernel is prohibited. Aside from these protection measures, we
decide not to expand further on this specific attack vector; there are already solutions,
like vTPM [40], which implement a more sophisticated way of securing the system’s boot

procedure and verifying that the code launched by firmware is trusted.

The kernel of an OS is a program, and, as such, some bugs are typically expected: some
might simply just crash parts of the kernel without any other consequences, but some can

potentially be used to manipulate kernel memory structures and contents, or generally allow

This system call is used to load a new kernel for later execution.

42



arbitrary code execution. These types of attacks require a very deep knowledge of the
intricate Linux kernel to work successfully. Security patches are rolled out frequently to
fix or secure against these bugs. We assessed these attacks to be out of the scope of this

research, as the Linux kernel is constantly evolving.

4.2 Testing

We want to assess whether the files we protect with ferify are secure and cannot be
accessed, except from those we have allowed in the SACLs. To assess that ferify
worked as intended, we assume two basic scenarios. The first is that a remotely-connected
authorized user should be able to work as before; we wanted usability at the user level
to remain unchanged. The second scenario is that of a hacked user account in which the
attacker has remote access to the target VM through exploitation of a vulnerability in the
guest OS. In this second case, we assume a “worst case scenario” in which the attacker has

gained root privileges.

As all higher-level programs and attacks eventually resort to the execution of system calls,
we create an environmental setup to assess all the test cases relevant to the system calls
we trapped, in order to observe the behavior of the system and whether it conformed to
expectations. We perform specific commands, as explained later, on the guest VM to
emulate the actions of an attacker. These commands reflect the cases when ferify could

be applied and correspond to the most basic commands one can issue.

The configuration includes two user accounts in the sudoers group: one authorized and
one hacked by an attacker. The hacked account is assumed to have become a sudoer
through malicious actions. Additionally we create a group that includes both users, with
the intention of assessing the per group policy enforcement to file access. The intent is to
check detection of the illegal escalation of the hacked account to root and the effect this

has. A high-level overview of our design is illustrated in Figure 4.1.

We also try, as root, to access files that were being protected from this specific user. These
files include the /etc/shadow and /etc/pam.d/su, which were included in the SACLs

to protect our initial VM configuration.

By themselves these cases cover the basic set of actions that feri £y was initially designed to
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monitor. Any combination of them is handled separately from the underlying OS, reducing

our problem to these elementary cases and making it easier to monitor and handle.

Authorized user Attacker

. !

[ Vulnerable VM ]

File Operation

Trusted Zone

Trapped

LibVMI / syscalls
{ REATSY J Ferify plugin
NO
r
i3

( 7

Yes

HDD
Other Protected
files files
- J

Figure 4.1. Testing and validation concept.

First, we test whether an illegal root escalation is possible; then we test the file operations

including create, open, read, write, copy, move, and delete.

4.2.1 Root Escalation

One of the first actions of an attacker or malicious program is to try to escalate its privileges
to that of the root account. One of the techniques commonly employed is to add the
compromised user to the sudoers group. To avoid such an exploitation, every time a trap
gets caught by the hypervisor we check whether the user executing a sudo command is
actually allowed to do so.'? If the user is a legitimate sudoer, the flow of our plugin
continues normally to check the validity of the file operation against the SACLs. If the
user is not supposed to have sudo privileges, the system calls trapped by ferify that get
invoked then get canceled, denying the ability to perform any sudo commands. Figure 4.2
shows the result of trying to execute a sudo command that gets denied, while also notifying

the hypervisor of the event as shown in Figure 4.3.

12]f a user is allowed to execute the sudo command, that is specified in the initial administrative setup of
ferify for the specific VM.
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bob@aHVM—-domU:~$ sudo 1ls
sudo: unable to open /etc/sudoers: Bad address
sudo: no valid sudoers sources found, qgquitting
sudo: unable to initialize policy plugin
bob@aHVM—-domU:~$

Figure 4.2. Denying sudo.

Warning: Process root identity corruption detected in task
1377! Is 0 and should be 1002.
Invalidating syscall.

[SYSCALL: 2] CR3:0xlafec000 , RDI: 0x7f2178a931f7 , sudo
PID:1377 [0:1002] wants 0 access to file:
/etc/sudoers (mode:0)

Figure 4.3. Denying sudo notification on the hypervisor.

In the same manner, the result of trying to change a user’s password is shown in Figure 4.4.

bobR@aHVM—-domU:~$ passwd alice
Enter new UNIX password:
Retype new UNIX password:
passwd: Authentication token manipulation error
passwd: password unchanged
bob@aHVM—-domU:~$

Figure 4.4. Denying password change from root account.

Having solved the issue of malicious root access, we then need to validate the expected

behavior for file access, regardless of root user request.

4.2.2 Authorized User Operation

A very important aspect of any security solution is its impact on usability for the normal
user. The implementation of a secure system that remains fully usable is always a challenge.
In this test we evaluate whether authorized users could normally access and work on their
files. To test the file operations we create two files, filel and file2, and check whether
we can open, move, or overwrite them. In the SACLs, we have entries for three files to test
whether the third file could be created. The permissions for the files on the guest OS and
the SACLs are explained in Table 4.1.
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Table 4.1. File permissions for authorized user.

File Owner Group Others
Name | Read | Write | Execute | Read | Write | Execute | Read | Write | Execute
Guest OS
filel Vv Vv - vV - - v - -
file2 Vv Vv - v - - v - -
file3 v v - Vv - - v - -
Hypervisor User’s SACL

filel v v - Vv - - v - -
file2 v v - v - - v - -
file3 v v - v - - v - -

After running our test script!3 to verify the ability to access the user’s files normally, the

results show that the files are accessible as expected in every mode (Figure 4.5).

$ ./file_tests filel file2 file3
Success: Opened filel for reading by user alex. Able to copy.
Success: Opened filel for writing by user alex.
Success: file2 created by user alex.
Success: user alex deleted file2.
Success: user alex moved filel to file3.

Figure 4.5. File operations execution for authorized user.

All basic file operations are available to an authorized user. We assess that the usability
level for a normal user remains unchanged. By modifying the SACL permissions, we can
allow or deny certain operations on user- or group-owned files, according to the desired

policy to be enforced.

4.2.3 Attacker Operation - root Access - Immutable Objects

One of the biggest problems in information security is thata root user or administrator
of the system has access to all its files and folders. That is the reason most attacks try to
result in escalation of privileges to an administrative account. While the administrator is
usually someone trusted and should have access to all OS files for management issues, there
are cases when even that person should not get access to certain information. The ferify
process can provide the capability for normal users to have full access to their files, while at

the same time the administrator cannot have full or even limited access to them. By setting

13The source code of the test script is included in Appendix A.
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the relevant file permissions, as per Table 4.2, we can deny total access to the administrator

on any file. This SACL is different from the previous one, allowing for user-based policy.

Table 4.2. File permissions for root.

File Owner Group Others

Name | Read | Write | Execute | Read | Write | Execute | Read | Write | Execute
Guest OS

filel v v - v - - v - -

file2 Vv v - v - - v - -

file3 v v - v - - v - -

Hypervisor root’s SACL
filel - - - - - - - - -
file2 - - - - - - - - -
file3 - - - - - - - - -

After running our test script to verify the ability to deny access to root on the user’s
files, the results (Figure 4.6) show that the files are inaccessible in every mode expected,
according to the permissions we set in the SACL. We assess that denying file access to
the root user is an important security implementation, as it provides great confidentiality

assurance, as well as nullifying a range of attack vectors on systems, old or new.

A result of ferify is that it can be used to create immutable files on a system. With write
access denied to everyone, there can be files that cannot be modified yet remain accessible

for reading, providing great integrity assurance.

S sudo ./file_tests filel file2 file3
Failure: Could not open filel for reading by user root.
Cannot copy.
Failure: Could not open filel for writing by user root.
Failure: file2 could not be created by user root.
Failure: user root could not delete file2.
Failure: user root could not move filel to file3.

Figure 4.6. File operations execution for non-authorized user.

4.2.4 Malware Protection
To make ferify work as a white-listing security application we implement a slightly
different logic for the execve () and execveat () system calls. The results of our testing

are satisfactory, but more thorough testing should be performed.
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We have successfully managed to apply different execution permissions and block appli-
cation execution on a per-user level. This differs from the other system call’s handling in
that if the executable is not in the SACL, we deny execution. There is no different SACL
implementation for this case, just separate handling of the execve () system call. Since we
assume that the system is secure when we launch ferify, any file in the filesystem should
not be malicious. For a malware to create a persistence mechanism, it will have to write
executable code on the victim system and run it at some point. Since that file will not be
in the SACL, we automatically block that executable from running, thus having efficiently
mitigated a large attack-vector of malware. To mitigate against attacks that modify OS
executables with malicious ones, system executables should also be marked as non-writable

in the SACLs to prevent modification and ensure their integrity.

4.2.5 Append-only Mode

Once attackers have achieved system penetration, they start accessing the OS in many
ways; accessing of files for information gathering, creation of persistence mechanisms, and
installation of back-doors are just a few. To remain undetected they must “hide their tracks”;
attackers usually edit system logs to erase their presence. Log files are created by appending
entries at the end of the file, but this is not an enforced file-access policy. As such, log files
are generally accessible to and editable by attackers. Forcing log files to be writable only at

the end of the file can prevent attackers from hiding their tracks.

Due to the OS limitations, we could not enforce partial write permissions on a file. Given
the permissions the user requests, a file can be opened only in its entirety. The ferify
process is capable of enforcing a write-only access policy to files and attackers are not able
to open a file in read-write mode, select, and delete the log entries that reveal their presence.
Attackers would have to blindly delete entries or empty the entire log, actions that should
be noticed by the system administrator. We believe that this policy can be proven to be a

substantial hindrance to malicious actors trying to “cover their tracks” in the system.
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4.3 Performance Overhead

In this section we present the performance overhead observed on the guest OS when running
ferify. To have a baseline for comparison, we created a Python script'4 that performs
some of the trapped system calls and measures the execution time. From the results we
calculated the average execution time of each system call and the standard deviation. We
then performed time-execution measurements in three stages: The first was under normal
CPU scheduling preferences. For the second run, we set the niceness of ferify to -20.
Niceness for Linux is how favorable the scheduling will be for the process, with -20 being
the best value and 10 the normal value. Finally, for the third run, in conjunction with
changing the niceness of the process, we additionally set the input/output (I/O) niceness
to the best available value. This changes the I/O scheduling of processes, giving ferify
I/O priority over all others. Initially, we timed the execution of the script over a number of
iterations without running ferify to extract an average time that we will use as a reference.

Figure 4.7 shows the three commands we used to run derify with different priorities.

$ sudo ./ferify
$ sudo nice -n -30 ./ferify
$ sudo nice —-n —-30 ionice —-c 1 —-n 0 ./ferify

Figure 4.7. Ferify priority command-line settings.

4.3.1 Hypervisor - VM Switch

As mentioned in Subsection 2.4.1, one of the most intense operations in virtualization is the
switch between the hypervisor and the VM. CPU virtualization extensions improve with
every new model release, but this switch is still significant. To measure this overhead in
performance, weran feri fy withempty SACLs. This way, ferify trapped the appropriate
system calls and performed the switch between the VM and the hypervisor. Because the
SACLs were empty, there was insignificant computation performed while on the hypervisor,

almost immediately switching back to the VM.

Table 4.3 shows the results and the performance overhead of the VM context-switch. As

expected, the cost of VM-exit and VM-entry is significant.

14The source code of the performance test script is included in Appendix B.
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Table 4.3. Context-switch performance overhead measurements.

With ferify

Without ferify

System call | Avg time (msec) Std dev | Avg time (msec) Std dev Increase
No scheduler priority set

open () 1.410575 0.042011 0.272977 0.040227 | 516.74%
rename () 1.177306 0.060151 0.119034 0.032872 | 989.05%
unlink () 1.265741 0.044768 0.110438 0.022926 | 1,146.11%

With best nice value

open () 1.808050 0.118523 0.272977 0.040227 | 662.34%
rename () 1.510058 0.114244 0.119034 0.032872 | 1,268.59%
unlink () 1.617183 0.116488 0.110438 0.022926 | 1,464.34%

With best nice and ionice values

open () 1.763718 0.131143 0.272977 0.040227 | 646.10%
rename () 1.547484 0.111831 0.119034 0.032872 | 1,300.03%
unlink () 1.648374 0.120758 0.110438 0.022926 | 1,492.58%

4.3.2 SACL Performance Overhead

The information for the files in the SACLs is stored in a hash table. The index of the table
is the pathname. Since the lookups made in the hash table depend on the depth of the
file’s directory tree, the searching of a file in the SACL is of O(d) complexity, where d is
the aforementioned depth. Since the depth of a directory tree is usually relatively short,
we assess the algorithm to be efficient. To verify the claim that the search time does not
depend on the entries of the SACL, we ran the same test with the same settings and files,
but with different SACL sizes each time (as shown in Table 4.4). To avoid as much OS
interference as we could, we set both settings of niceness to the best value. The results
seem to support our claim; the average execution time of the tested system calls is of the

same magnitude.

Table 4.4. Hash-table search times (msec).

SACL size
System call 100 | 1,000 | 10,000 | 100,000
open () 0.203920 0.204899 0.206650 0.202786
rename () 0.256427 0.256371 0.259813 0.255484
unlink () 0.191526 0.193019 0.194595 0.190740

Despite the promising results, we needed to measure ferify’s total performance overhead
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when running on a full filesystem. To evaluate ferify’s efficiency, we ran the same script
as before, but with a full filesystem SACL containing more than 400,000 entries. For the
purposes of testing, our VM had no extra programs installed and we had created just a few

user files. In a normally used OS many more entries would be expected.

Although the increase in execution time seems extremely large, the average execution time
of a single system call seems to remain within usable limits. While using the guest VM to

evaluate the use experience, we did not notice any delays.

Table 4.5 shows the result of the second run of our test. We observed that the total perfor-
mance overhead remained in the same magnitude. Some numbers might seem contradictory,
but this is normal as the Linux kernel schedules each running process differently and con-
tinuously creates more. This is the reason we focused on the magnitude instead of the
actual numbers. Compared to the dominant cost of switching between the hypervisor and
the guest VM, we assessed that the hash-table implementation and the permission checking
algorithm had an insignificant impact on performance. This is the exact reason we decided
to trap each system call individually, instead of trapping the system call handler, which is the
kernel’s entry point to all system calls. This case would cause even greater overhead, as the
VM context switch would happen for each and every system call invoked by all processes

running on the OS.

Table 4.5. ferify's performance overhead measurements.

With ferify Without ferify
System call | Avg time (msec) Std dev | Avgtime (msec) Std dev Increase
No scheduler priority set

open () 1.742811 0.064730 0.272977 0.040227 | 638.45%
rename () 1.824321 0.059661 0.119034 0.032872 | 1,532.60%
unlink () 1.627008 0.098494 0.110438 0.022926 | 1,473.24%

With best nice value

open () 1.743948 0.047873 0.272977 0.040227 | 638.86%
rename () 1.776946 0.057694 0.119034 0.032872 | 1,492.80%
unlink () 1.593204 0.047137 0.110438 0.022926 | 1,442.63%

With best nice and ionice values

open () 2.105518 0.101172 0.272977 0.040227 | 771.32%
rename () 2.170908 0.155974 0.119034 0.032872 | 1,823.77%
unlink () 1.919827 0.149137 0.110438 0.022926 | 1,738.38%
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CHAPTER b5:

Conclusion and Future Work

In this chapter, we present the benefits of ferify and the lessons we learned during its
development. We also present some limitations of a security solution that is completely
transparent to the guest VM, as we encountered them. Finally, we present some ideas for

future development of ferify.

5.1 Conclusion

In this thesis we developed feri fy, a virtual file-protection system for preventing a range of
zero-day attacks. As mentioned in Chapter 2, other virtualization solutions exist, with others
being continuously developed. We believe that ferify has some unique characteristics
that make it more efficient than the already existing solutions. As we observed them, the
benefits of ferify, as well as some limitations of a security solution that is completely

transparent to the guest VM, can be summarized as follows:

* Deciding to use DRAKVUF [4] as our base platform, we necessarily gave ferify
a zero-footprint in the guest VM, making it a full out-VM solution that cannot be
detected by the guest VM. Although there are techniques for detecting whether an
OS is virtualized or not, there is no way to detect whether ferify is running, nor
how to bypass the settings of the SACL.

* Making ferify a complete out-VM solution in which all code and information is
stored on the hypervisor makes interacting and subverting ferify almost impossible,
effectively isolating our solution from the guest OS. Hypervisor-based attacks are
outside the scope of this thesis: we expect that hypervisors will become more secure
and robust over time.

» Using ferify can provide significant improvement on an OS’s file confidentiality,
integrity, and availability. As we have managed to tighten the Linux file permissions,
we can enforce a different user-based ACL policy than the one in the guest OS,
protecting critical files and information in a transparent way. We can deny reading,
modification, and deletion of files, as well as execution of programs, on a white-list

basis. Applying all these for the root account also offers a significant improvement
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in information security and system integrity, as until now the system’s administrator
could access everything stored on the OS.

Using ferify also provides kernel security and integrity by denying kernel module
loading and new kernel booting. This step ensures that the guest OS kernel will
remain unmodified by attackers, and that existing and new zero-day attacks will not
work on a ferify protected VM.

Using the LibVMI’s current API is limited to accessing and modifying a VM’s
CPU registers or memory contents. It does not provide functions to access files and
devices. This is an important limitation on what introspection can achieve. For cases
like ferify, protecting files must be done on a different level than that of the actual
file. This is the reason we had to trap the system calls and introduce an insignificant
performance overhead.

Assessing performance overhead, as measured in Section 4.3, is a significant con-
sideration. Trapping of many system calls can result in a less-usable environment.
Our measurements were performed using only one VM. In a more expanded en-
vironment, where many VMs are running, the hypervisor-VM switch overhead can
increase significantly and be a limiting factor in the use of virtualization security
applications.

Making assumptions and inferences of the high-level actions in a VM by examining
its internal state is at best extremely difficult, if not impossible, as we acknowledged
in Chapter 2 in regard to the existing data semantic gap between the hypervisor and
a VM. To achieve that, we need to know the internals of the guest OS at a deep level
in order to be able to retrieve information that allows us to recreate the high-level
actions. This data semantic gap is a huge obstacle and limitation of an out-VM
security solution. In the case of ferify, the design was such that we did not need to
make any inferences about the state of the guest OS. The file access control policy
monitoring does not need to implement intricate relations between different kernel
memory structures or user space memory. This allowed for a simpler design, but

could become more complex as new features might need access to additional data.
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5.2 Lessons Learned
During the development of feri fy we encountered some problems, which we were required

to solve in order to continue our progress.

Creating an out-VM solution has some challenges, with the most important being the data
semantic gap mentioned in Chapter 2. Although for ferify there is need for minimal
context of what is happening in the guest VM, we needed to bridge that gap in some cases.
This bridging required deep research of the Linux kernel to determine where the required
information is stored and how to recreate some information that is not directly stored in
the kernel. In the case of the development of a solution that is required to make some
decisions and inferences based on higher level information, bridging this semantic gap

could be extremely challenging.

To make a more complete and robust application, researchers must understand that building
a security solution is a complex process that requires several iterations and revisiting of
already implemented parts for improvements and integration of newer features. During this
thesis, we initially considered trapping only three system calls. As ferify evolved, and
we discovered other vectors of file access, we finally trapped a total of 19 system calls so

that we could monitor all possible ways of accessing a file.

5.3 Future Work

As in every case of a developed application, ferify can also be improved to provide
enhanced efficiency and better monitoring. Although we believe that we have addressed all

possible ways a file can be accessed, there are ways ferify can be improved:

* Finding the thread count of a process and monitoring the additions and exits should
be added in ferify’s logic. Although the basic functionality is present, missing the
initial thread count of a process does not allow us to know when a process completely
terminates, and is not always removed from our task list. This can result in some
errors during the validation of the process’s identity, particularly in the case of the
creation of a new process with a duplicate pid as the one we did not detect exiting.
Although we have trapped the exit_group () system call, we cannot be sure that

the last thread will invoke it and not the exit () system call. Furthermore, more
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research and testing is required to verify whether multi-threaded processes have the
same CR3 value between threads and keep track of it for use in the process identity
validation.

» Testing ferify in our research, we used a single-CPU VM. Future work might be
needed to modify ferify to work on multi-CPU VMs. DRAKVUF, when running
a callback function, provides the information about the virtual-CPU that causes the
VM-exit event. That information can be used to adjust ferify’s code, if needed, to
trap and handle all system calls from all virtual-CPUs of the guest VM.

* Reloading the SACLs while ferify is running is a desired feature that would also
make ferify more robust and secure. This could be done by registering a new
signal handler, or modifying an existing one, to destroy and recreate the hash tables
from the new SACLs. Additionally, the development of an administrative interface
that allows easier management of the SACLs will increase the usability of the system.
Currently, if there is a need to change the SACLs, we need to terminate ferify and
relaunch it for the changes to take effect, leaving a window of vulnerability between
the termination and re-initialization of ferify.

* Blocking all kernal modules that users try to load, which ferify currently accom-
plishes, is a good start. Usually, after the system has booted there is no need to load
a new kernel module. There are cases though, that a frusted kernel module needs to
be loaded. Allowing digitally signed modules can improve usability of the system, as
they can be considered trusted and allowed to execute. This could be implemented by
reading the digital signature from the hypervisor and then checking its validity before
continuing execution of the guest VM.

* Logging of important events in a VM is a current capability of ferify. A notifica-
tion mechanism to alert the system’s administrators of illegal access would improve
incident response time. This mechanism could potentially include options like auto-
pausing for handling a maliciously accessed VM.

* Testing must be done to ensure compatibility with other Linux distribution as our
development only used the Ubuntu distribution. We expect that this will not be an

issue as most Linux distributions use the same kernel.

The previous list is by no means exhaustive. As new problems or desired features surface,

other features or enhancements are likely to be required.
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APPENDIX A:

File Access Test Script

This appendix contains the script we created to test the various file access methods.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

#include <unistd.h>

#include <sys/types.h>

#include <pwd.h>

int main (int argc, char*x argv) {

int fp = 0, r = 0;

void * buf = malloc (64) ;

char » a = "a'";

struct passwd *p =

fp = open (argv[1l],

if (fp < 0){

printf ("Failure:

getpwuid (getuid () ) ;

O_RDONLY) ;

Could not open

o

S

.\n", argv[l], p->pw_name) ;

} else {

printf ("Success:

argv[l], p—->pw_name) ;

close (fp) ;

fp = open(argv[1l],
if (fp < 0){

printf ("Failure:

p—>pw_name) ;

} else {

printf ("Success:

pw_name) ;

close (fp) ;

fp = open(argv[2],
if (fp < 0) {

printf ("Failure:

pw_name) ;

} else {

printf ("Success:

close (fp) ;

Opened %s for reading

O_WRONLY) ;

Could not open %s

Opened %s for writing by user

O_RDWR | O_CREAT,

o
S

o

S

S

could not be created by user %s

created by user
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for reading

for writing

0666) ;

$s.\n",

argv[2],

p—>pw_name) ;

by user %s. Cannot copy
by user %s. Able to copy.\n",
by user %s.\n" argv([1l]
$s.\n", argv[l], p->
.\n", argv[2], p->



fp = unlink (argv([2]) ;

if (fp !'= 0) |
printf ("Failure: user %$s could not delete %$s.\n", p—>pw_name, argv[2]);
} else {
printf ("Success: user %$s deleted %$s.\n'", p—->pw_name, argvI[2]);
}
fp = rename (argv([1l], argvI[3]);
if (fp !'= 0) {
printf ("Failure: user %$s could not move %s to $s.\n", p—>pw_name, argv

[1]1, argv([3]);

} else {

printf ("Success: user %$s moved %s to %$s.\n'", p—>pw_name, argv[l], argv
[31);
fp = rename (argv[3], argv([1l]);

return O0;
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APPENDIX B:
Performance Overhead Test Script

This appendix contains the script we created to measure the performance overhead of
ferify.

#!/usr/bin/python3

import time

from timeit import default_timer as timer
import math

import os

import sys
def test (iterations = 100, sleep_time = 1):
timing_overhead = []

total_timing = 0

o_results = []

o_total = 0
o_avg = 0
o_s =0
o_var = 0

u_results = []

u_total = 0
u_avg = 0
u_s = 0
u_var = 0

r_results = []

r_total =
r_avg = 0
r.s =0

r_var = 0

for 1 in range(iterations):

f = open("test" 4+ str(i) + ".txt", "w'")
f.close ()
o_start = timer ()

for i in range (iterations):

time.sleep(sleep_time)

o_stop = timer ()
baseline = o_stop - o_start
f = [None] % iterations
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o_start = timer ()

for i in range(iterations):
f[i] = open("test" + str (i) + ".txt", "w")
time.sleep(sleep_time)

o_stop = timer ()

o_overhead = ((o_stop - o_start) — baseline) / iterations

for i in range(iterations):

fl[i]l.close ()

r_start = timer ()

for i in range (iterations):

os.rename ("test" + str (i) + ".txt", "test" 4+ str(i) + "_.txt")

time.sleep(sleep_time)

r_stop = timer ()
r_overhead = ((r_stop - r_start) - baseline) / iterations
u_start = timer ()

for i in range(iterations):
os.unlink ("test" + str (i) + "_.txt")
time.sleep (sleep_time)

u_stop = timer ()

u_overhead = ((u_stop — u_start) - baseline) / iterations

print ("Timing:\t" + str (baseline))
print ("Open:\t" + str (o_overhead))
print ("Rename:\t" + str (r_overhead))

print ("Unlink:\t" + str (u_overhead))

__name__ == ' main

.

if len(sys.argv) == 3:

test (int (sys.argv([1l]), int(sys.argv([2]))
else:

test ()
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APPENDIX C:
Ferity Code

This appendix contains the two files of ferify. The license terms presented in both files
are verbatim those of DRAKVUF.

ferify.h

[*Kkkhkhkhkkkkkkhkkhkkkxkx,k* *k*kx IMPORTANT DRAKVUF LICENSE TERMS**kkkkkkkkhkhkkkkkkkhkkkxk*

* *
* DRAKVUF (C) 2014-2017 Tamas K Lengyel. *
* Tamas K Lengyel is hereinafter referred to as the author. *
* This program is free software; you may redistribute and/or modify it *
* under the terms of the GNU General Public License as published by the *
* Free Software Foundation; Version 2 ("GPL"), BUT ONLY WITH ALL OF THE *
* CLARIFICATIONS AND EXCEPTIONS DESCRIBED HEREIN. This guarantees your *
* right to use, modify, and redistribute this software under certain *
* conditions. If you wish to embed DRAKVUF technology into proprietary *
* software, alternative licenses can be acquired from the author. *

*
*

*

Note that the GPL places important restrictions on "derivative works'",

*

yet it does not provide a detailed definition of that term. To avoid
misunderstandings, we interpret that term as broadly as copyright law
allows. For example, we consider an application to constitute a
derivative work for the purpose of this license if it does any of the
following with any software or content covered by this license

("Covered Software"):

o Integrates source code from Covered Software.

o Reads or includes copyrighted data files.

L R e S S S S S

o Is designed specifically to execute Covered Software and parse the

*

results (as opposed to typical shell or execution-menu apps, which will

L S T S S

*

execute anything you tell them to).

*
*

* o0 Includes Covered Software in a proprietary executable installer. The *
* installers produced by InstallShield are an example of this. Including =%
* DRAKVUF with other software in compressed or archival form does not *
* trigger this provision, provided appropriate open source decompression *
* or de—archiving software is widely available for no charge. For the *
* purposes of this license, an installer is considered to include Covered «*
* Software even if it actually retrieves a copy of Covered Software from «
* another source during runtime (such as by downloading it from the *
x Internet) . *
* *
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*

*

X% ok ok ok oF

o Links (statically or dynamically) to a library which does any of the

above.

o Executes a helper program, module, or script to do any of the above.

This 1list 1is not exclusive, but is meant to clarify our interpretation
of derived works with some common examples. Other people may interpret
the plain GPL differently, so we consider this a special exception to
the GPL that we apply to Covered Software. Works which meet any of
these conditions must conform to all of the terms of this license,
particularly including the GPL Section 3 requirements of providing

source code and allowing free redistribution of the work as a whole.

Any redistribution of Covered Software, including any derived works,
must obey and carry forward all of the terms of this license, including
obeying all GPL rules and restrictions. For example, source code of
the whole work must be provided and free redistribution must be
allowed. All GPL references to "this License", are to be treated as

including the terms and conditions of this license text as well.

Because this license imposes special exceptions to the GPL, Covered

Work may not be combined (even as part of a larger work) with plain GPL

software. The terms, conditions, and exceptions of this license must
be included as well. This license 1is incompatible with some other open
source licenses as well. In some cases we can relicense portions of

DRAKVUF or grant special permissions to use it in other open source
software. Please contact tamas.k.lengyel@gmail.com with any such

requests. Similarly, we don’t incorporate incompatible open source
software into Covered Software without special permission from the

copyright holders.

If you have any gquestions about the licensing restrictions on using
DRAKVUF in other works, are happy to help. As mentioned above,
alternative license can be requested from the author to integrate
DRAKVUF into proprietary applications and appliances. Please email

tamas.k.lengyel@gmail.com for further information.

If you have received a written license agreement or contract for
Covered Software stating terms other than these, you may choose to use

and redistribute Covered Software under those terms instead of these.

Source 1s provided to this software because we believe users have a
right to know exactly what a program is going to do before they run it.

This also allows you to audit the software for security holes.

Source code also allows you to port DRAKVUF to new platforms, fix bugs,
and add new features. You are highly encouraged to submit your changes
on https://github.com/tklengyel/drakvuf, or by other methods.

By sending these changes, it 1is understood (unless you specify

otherwise) that you are offering unlimited, non-exclusive right to
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* reuse, modify, and relicense the code. DRAKVUF will always be

* available Open Source, but this 1is important because the inability to
* relicense code has caused devastating problems for other Free Software
* projects (such as KDE and NASM) .

* To specify special license conditions of your contributions, Jjust say
* so when you send them.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY;
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* license file for more details (it’s in a COPYING file
* DRAKVUF, and also available from

* https://github.com/tklengyel/drakvuf/COPYING)

without even the
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*/

#ifndef
#define

FERIFY_H
FERIFY_H

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MAX_PATHNAME_LEN 4096
MAX_FILENAME_LEN 256
AT_FDCWD1l OxFFFFFFFFFFFFFFOC
AT_FDCWD2 OxFFFFFF9C
PERMISSIONS 07
S_ISDIR 040000

MATCH 0

ROOT 0

USER 1

GROUP 2

OTHER 3

INV -1

SOURCE 0

DEST 1

IS_FILE O

IS_DIR 16384
MAX_SUDOERS_COUNT 16

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

S_OPEN 2
S_CLOSE 3
S_CLONE 56
S_FORK 57
S_VFORK 58
S_OPENAT 257
S_RENAME 82
S_RENAMEAT 264
S_RENAMEAT2 316
S_UNLINK 87
S_UNLINKAT 263
S_SYMLINK 88
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#define S_SYMLINKAT 266
#define S_LINK 86
#define S_LINKAT 265
#define S_EXECVE 59
#define S_EXECVEAT 322
#define S_INIT_MOD 175
#define S_FINIT_MOD 313
#define S_TRUNCATE 76
#define S_EXIT 60
#define S_EXIT_GROUP 231

#define S_NAME_TO_HANDLE_AT 303
#define S_OPEN_BY_HANDLE_AT 304
#define S_KEXEC_LOAD 246
#define S_KEXEC_FILE_LOAD 320

#include <glib.h>
#include <openssl/sha.h>
#include "plugins/plugins.h"

#include "plugins/private.h"

typedef struct protected_files/{
char % pathname;
unsigned int mode;
uid_t u, g;
struct protected_files * next

} p_files;

typedef struct task_t/{
addr_t task_addr;
pid_t pid;
uint64_t uid;
gid_t gid;
uint32_t threads = 0;
short checked = 1;

} task;

typedef struct task_entry_t |
addr_t task_addr;
struct task ;

} task_entry;

typedef struct entry_t {
unsigned int mode;
uid_t u;
gid_t g;

} entry;

class ferify: public plugin {

NULL ;
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private:

GSList =*xtraps;

public:
uint8_t reg_size;

output_format_t format;

os_t os;

addr_t rva = 0;

addr_t kaslr = 0;

addr_t s_open = 0;

addr_t s_openat = 0;

addr_t s_rename = 0;

addr_t s_renameat = 0;

addr_t s_renameat2 = 0;

addr_t s_unlink = 0;

addr_t s_unlinkat = 0;

addr_t s_close = 0;

addr_t s_execve = 0;

addr_t s_execveat = 0;

addr_t s_exit = 0;

addr_t s_exit_group = 0;

addr_t s_truncate = 0;

addr_t fork_ret = 0;

addr_t s_clone = 0;

addr_t s_fork = 0;

addr_t s_vfork = 0;

addr_t s_symlink = 0;

addr_t s_symlinkat = 0;

addr_t s_link = 0;

addr_t s_linkat = 0;

addr_t s_init_mod = 0;

addr_t s_finit_mod = 0;

addr_t s_kexec_load = 0;

addr_t s_kexec_file_load = 0;

task * task_1ist [32768] = { NULL };
vmi_pid_t p_pid = -1;

GHashTable % filelist = NULL;
GHashTable % filelist_root = NULL;
GHashTable % folderlist = NULL;
GHashTable % folderlist_root = NULL;
uint32_t sudoers [MAX_SUDOERS_COUNT] = { 0 };

ferify (drakvuf_t drakvuf, const void *config, output_format_t output);
~ferify () ;
bi

int permissions_check2 (drakvuf_t drakvuf, char *x filename, entry * e,

drakvuf_trap_info_t % info, int id, int regqg);
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int identity_check (drakvuf_t drakvuf, drakvuf_trap_info_t *x info, vmi_pid_t
current_pid) ;

int add_task (ferify = f, vmi_pid_t current_pid, uid_t u, gid_t g, addr_t
process, short checked);

void intercept_print (drakvuf_trap_info_t xinfo, char % filename, char =
filename2, vmi_pid_t currpid);

void process_list (drakvuf_t drakvuf, ferify % s, vmi_instance_t wvmi);

void check_syscall_table_corruption (ferify xs, drakvuf_trap_info_t «*info);

char * get_pathname (drakvuf_t drakvuf, drakvuf_trap_info_t <*info, char «
filename, int append_filename) ;

char * get_dirfd(drakvuf_t drakvuf, drakvuf_trap_info_t «*info,
vmi_instance_t vmi, char xfilename, vmi_pid_t currpid, addr_t
process_base) ;

char % get_pathname_from_reg (drakvuf_t drakvuf, drakvuf_trap_info_t =xinfo,
vmi_instance_t vmi, vmi_pid_t currpid, int reg);

char % get_pathname_from_reg_at (drakvuf_t drakvuf, drakvuf_trap_info_t =«
info, vmi_instance_t wvmi, vmi_pid_t currpid, addr_t process_base, int
reqg) ;

static event_response_t fork_cb (drakvuf_t drakvuf, drakvuf_trap_info_t =«
info) ;

static event_response_t exit_cb (drakvuf_t drakvuf, drakvuf_trap_info_t «*
info) ;

void free_entry (gpointer key, gpointer value, gpointer user_data);

#endif
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ferify.cpp
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DRAKVUF (C) 2014-2017 Tamas K Lengyel.

Tamas K Lengyel is hereinafter referred to as the author.

This program is free software; you may redistribute and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; Version 2 ("GPL"), BUT ONLY WITH ALL OF THE
CLARIFICATIONS AND EXCEPTIONS DESCRIBED HEREIN. This guarantees your
right to use, modify, and redistribute this software under certain
conditions. If you wish to embed DRAKVUF technology into proprietary

software, alternative licenses can be acquired from the author.

Note that the GPL places important restrictions on "derivative works'",
yet it does not provide a detailed definition of that term. To avoid
misunderstandings, we interpret that term as broadly as copyright law
allows. For example, we consider an application to constitute a
derivative work for the purpose of this license if it does any of the
following with any software or content covered by this license

("Covered Software"):
o Integrates source code from Covered Software.
o Reads or includes copyrighted data files.

o Is designed specifically to execute Covered Software and parse the
results (as opposed to typical shell or execution-menu apps, which will

execute anything you tell them to).

o Includes Covered Software in a proprietary executable installer. The
installers produced by InstallShield are an example of this. Including
DRAKVUF with other software in compressed or archival form does not
trigger this provision, provided appropriate open source decompression
or de—archiving software is widely available for no charge. For the
purposes of this license, an installer is considered to include Covered
Software even 1if it actually retrieves a copy of Covered Software from
another source during runtime (such as by downloading it from the

Internet) .

o Links (statically or dynamically) to a library which does any of the

above.
o Executes a helper program, module, or script to do any of the above.

This 1list is not exclusive, but 1is meant to clarify our interpretation
of derived works with some common examples. Other people may interpret
the plain GPL differently, so we consider this a special exception to
the GPL that we apply to Covered Software. Works which meet any of
these conditions must conform to all of the terms of this license,

particularly including the GPL Section 3 requirements of providing
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source code and allowing free redistribution of the work as a whole.

Any redistribution of Covered Software, including any derived works,
must obey and carry forward all of the terms of this license, including
obeying all GPL rules and restrictions. For example, source code of
the whole work must be provided and free redistribution must be
allowed. All GPL references to "this License", are to be treated as

including the terms and conditions of this license text as well.

Because this license imposes special exceptions to the GPL, Covered

Work may not be combined (even as part of a larger work) with plain GPL

software. The terms, conditions, and exceptions of this license must
be included as well. This license 1is incompatible with some other open
source licenses as well. In some cases we can relicense portions of

DRAKVUF or grant special permissions to use it in other open source
software. Please contact tamas.k.lengyel@gmail.com with any such

requests. Similarly, we don’t incorporate incompatible open source
software into Covered Software without special permission from the

copyright holders.

If you have any questions about the licensing restrictions on using
DRAKVUF in other works, are happy to help. As mentioned above,
alternative license can be requested from the author to integrate
DRAKVUF 1into proprietary applications and appliances. Please email

tamas.k.lengyel@gmail.com for further information.

If you have received a written license agreement or contract for
Covered Software stating terms other than these, you may choose to use

and redistribute Covered Software under those terms instead of these.

Source 1is provided to this software because we believe users have a
right to know exactly what a program is going to do before they run it.

This also allows you to audit the software for security holes.

Source code also allows you to port DRAKVUF to new platforms, fix bugs,
and add new features. You are highly encouraged to submit your changes
on https://github.com/tklengyel/drakvuf, or by other methods.

By sending these changes, it is understood (unless you specify
otherwise) that you are offering unlimited, non-exclusive right to
reuse, modify, and relicense the code. DRAKVUF will always be
available Open Source, but this 1is important because the inability to
relicense code has caused devastating problems for other Free Software
projects (such as KDE and NASM) .

To specify special license conditions of your contributions, Jjust say

so when you send them.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the DRAKVUF

license file for more details (it’s in a COPYING file included with
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* DRAKVUF, and also available from

* https://github.com/tklengyel/drakvuf/COPYING)
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*/

#include <config.h>
#include <glib.h>

#include <inttypes.h>
#include <libvmi/libvmi.h>
#include <fcntl.h>
#include "ferify.h"

#include "libdrakvuf/private.h"
#include "libdrakvuf/linux—-offsets.h"

static event_response_t linux_cb (drakvuf_t drakvuf, drakvuf_trap_info_t =«

info) {
ferify xs = (ferifyx)info->trap->data;
char * name, x filename = NULL, % filename2 = NULL, % dirfd = NULL;
size_t t = 0, len = 0, len2 = 0;
p_files % check = NULL, % check2 = NULL;
vmi_instance_t wvmi = NULL;

vmi_pid_t currpid;
uid_t uid = 0;
gid_t gid = 0;

uinte6e4d4_t wval = 0;

uint64_t mode = 0;

addr_t addr = 0, process_base = 0;
void « k = NULL, % v = NULL;

entry x e = NULL;

gchar = f = NULL, x f2 = NULL;
gchar = h = NULL, x h2 = NULL;
uint32_t fd = 3;

access_context_t ctx;

vmi = drakvuf_lock_and_get_vmi (drakvuf) ;
currpid = vmi_dtb_to_pid(vmi, info->regs-—->cr3) ;
process_base = drakvuf_get_current_process (drakvuf, info->vcpu) ;
if (process_base == 0) {
printf ("[ ERROR ] Could not get current process base.\n");

check_syscall_table_corruption (s, info);

switch (info->regs->rax) {
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case S_OPEN:

case S_RENAME:
case S_UNLINK:
case S_TRUNCATE:
case S_LINK:

case S_SYMLINK:
case S_SYMLINKAT:

filename = get_pathname_from_reg (drakvuf, info, vmi, currpid, 1);

break;

case S_OPENAT:
case S_UNLINKAT:
case S_RENAMEAT:
case S_RENAMEAT2:
case S_LINKAT:
case S_EXECVEAT:

filename = get_pathname_from_reg_at (drakvuf, info, wvmi, currpid,

process_base, 2);

break;
default:
if (info->regs-—->rax == s—>s_execve)
filename = get_pathname_from_reg (drakvuf, info, wvmi, currpid, 1);
else if (info->regs—->rax == s—>s_execveat)
filename = get_pathname_from_reg_at (drakvuf, info, wvmi, currpid,

process_base, 2);

break;
}
if (filename != NULL) {
if (strncmp (filename, "/dev/", 5) == 0){

drakvuf_release_vmi (drakvuf) ;
return 0;

}

if (strncmp (filename, "/run/user/", 10) == 0) {
drakvuf_release_vmi (drakvuf) ;
return 0;

}

if (strncmp (filename, "/sys/", 5) == 0){
drakvuf_release_vmi (drakvuf) ;

return 0;

switch (info->regs->rax) {

case S_OPEN: // Open syscall
case S_OPENAT: // openat syscall
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if (identity_check (drakvuf, info, currpid) == false) {

intercept_print (info, filename, NULL, currpid) ;

vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;

break;

if (filename

break;

switch (info->userid) {

case ROOT: // Cases for filtering root access
// Check root folder list
if ( filename != NULL) {
h = g_strdup(filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
f11] = "\0';

if (g_hash_table_lookup_extended(s—>filelist_root,

e = (entry =*)v;
permissions_check?2 (drakvuf, filename, e,

break;

£f[0] = "\O0';
f = g_strrstr(h, "/");

// Check root file list

if (g_hash_table_lookup_extended (s—->filelist_root,

info,

h, &k, &v))

ROOT,

INV) ;

filename, &k,

&v) ) {
e = (entry *)v;
permissions_check2 (drakvuf, filename, e, info, ROOT, INV);
break;
}
}
break;
default: // other users
// Check folder 1list
if ( filename != NULL ) {
h = g_strdup (filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£[1] = "\O';
if (g_hash_table_lookup_extended (s—->filelist, h, &k, &v)) {
e = (entry *)v;
if (e—>u == info->userid) {
permissions_check2 (drakvuf, filename, e, info, USER, INV);

71



break;

}

else if (e—->g == info->groupid) {
permissions_check?2 (drakvuf, filename, e, info, GROUP, 1INV) ;
break;
}
else {
permissions_check?2 (drakvuf, filename, e, info, OTHER, INV);
break;
}
}
£10] = "\0';
f = g_strrstr(h, "/");
}
// Check file 1list
if (g_hash_table_lookup_extended(s—->filelist, filename, &k, &v)) {
e = (entry *)v;
if (e—->u == info->userid) {
permissions_check?2 (drakvuf, filename, e, info, USER, INV);
break;
}
else if (e->g == info->groupid) {
permissions_check?2 (drakvuf, filename, e, info, GROUP, INV);
break;
}
else |
permissions_check?2 (drakvuf, filename, e, info, OTHER, INV);
break;
}
}
break;
}
}
break;
case S_RENAME: // Rename syscall
case S_RENAMEAT: // renameat syscall
case S_RENAMEAT2:
case S_LINK:
case S_SYMLINK:
case S_LINKAT:
case S_SYMLINKAT:
switch (info—->regs—->rax) {
case S_RENAME:
case S_LINK:
case S_SYMLINK:
filename2 = get_pathname_from_reg (drakvuf, info, wvmi, currpid, 2)
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if (identity_check (drakvuf, info, currpid) == false) {
intercept_print (info, filename, filename2, currpid);
vmi_set_vcpureqg (drakvuf->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureg (drakvuf—->vmi, 0, RSI, info->vcpu) ;

break;

break;

case S_RENAMEAT:
case S_RENAMEAT2:
case S_LINKAT:

filename2 = get_pathname_from_reg_at (drakvuf, info, wvmi, currpid,

process_base, 4);

if (identity_check (drakvuf, info, currpid) == false) {
intercept_print (info, filename, filename2, currpid);
vmi_set_vcpureqg (drakvuf—->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureqg (drakvuf->vmi, 0, RSI, info->vcpu) ;

break;

break;

case S_SYMLINKAT:
filename2 = get_pathname_from_reg_at (drakvuf, info, wvmi, currpid,

process_base, 3);

if (identity_check (drakvuf, info, currpid) == false) {
intercept_print (info, filename, filename2, currpid);
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureg (drakvuf->vmi, 0, RDX, info->vcpu) ;
break;

}

break;

switch (info->userid) {
case ROOT: // Cases for filtering root access

// Check root folder 1list

if ( filename != NULL ) {
h = g_strdup(filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£111 = "\0';

if (g_hash_table_lookup_extended (s—>filelist_root, h, &k, &v))
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e = (entry *)v;
permissions_check?2 (drakvuf, filename, e, info, ROOT, SOURCE

break;

£f[0] = "\0O';
f = g_strrstr(h, "/");
}
// Check root file list
if (g_hash_table_lookup_extended (s—>filelist_root, filename, &k,

&v) )|
e = (entry *)v;
permissions_check?2 (drakvuf, filename, e, info, ROOT, SOURCE) ;
break;
}
}
if ( filename2 != NULL ) {
h2 = g_strdup(filename2) ;
f2 = g_strrstr(h, "/");
while (f2 != NULL) {
£f2[1] = "\0';
if (g_hash_table_lookup_extended (s—->filelist_root, h2, &k, &v)
) {
e = (entry *)v;
permissions_check?2 (drakvuf, filename2, e, info, ROOT, DEST)
i
break;
}
£2[0] = "\0';
f2 = g_strrstr (h2, "/");
}
// Check root file 1list
if (g_hash_table_lookup_extended (s—>filelist_root, filename2, &k
;o &v) ) o
e = (entry *)v;
permissions_check?2 (drakvuf, filename2, e, info, ROOT, DEST);
break;
}
}
break;
default: // other users
if ( filename != NULL ) {
h = g_strdup (filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
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SOURCE) ;

SOURCE) ;

SOURCE) ;

if (

h2
f2

DEST) ;

DEST) ;

DEST) ;

£111 = "\0';
if (g_hash_table_lookup_extended (s—->filelist, h, &k, &v)){
e = (entry *)v;
if (e—->u == info->userid) {
permissions_check?2 (drakvuf, filename, e, info, USER,
break;
}
else if (e—->g == info->groupid) {
permissions_check?2 (drakvuf, filename, e, info, GROUP,
break;
}
else {
permissions_check2 (drakvuf, filename, e, info, OTHER,
break;
}
}
£00] = "\0';
f = g_strrstr(h, "/");
filename2 != NULL ) {
= g_strdup (filename?2) ;
= g_strrstr(h, "/");
while (f2 != NULL) {
£f211]1 = "\0';
if (g_hash_table_lookup_extended (s—>filelist, h2, &k, &v)){
e = (entry *)v;
if (e—->u == info->userid) {
permissions_check2 (drakvuf, filename2, e, info, USER,
break;
}
else if (e—->g == info->groupid) {
permissions_check?2 (drakvuf, filename2, e, info, GROUP,
break;
}
else {
permissions_check?2 (drakvuf, filename2, e, info, OTHER,
break;
}
}
£2[0] = "\O';
f2 = g_strrstr (h2, "/");
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if ( filename != NULL ) {
if (g_hash_table_lookup_extended(s—>filelist, filename, &k,

e = (entry *)v;

if (e=>u == info->userid) {

&v))

permissions_check?2 (drakvuf, filename, e, info, USER, SOURCE

break;
} else if (e—->g == info->groupid) {

permissions_check?2 (drakvuf, filename, e, info, GROUP,

SOURCE) ;
break;
} else {
permissions_check?2 (drakvuf, filename, e, info, OTHER,
SOURCE) ;
break;
}
}
}
if ( filename2 != NULL ) {
if (g_hash_table_lookup_extended (s—=>filelist_root, filename2, &k
o&v) )|
e = (entry =*)v;
if (e—->u == info->userid) {
permissions_check?2 (drakvuf, filename2, e, info, USER,
DEST) ;
break;
} else if (e—>g == info->groupid) {
permissions_check2 (drakvuf, filename2, e, info, GROUP, DEST
) i
break;
} else {
permissions_check?2 (drakvuf, filename2, e, info, OTHER, DEST
)i
break;
}
}
}
}
break;
case S_UNLINK: // unlink syscall (to prevent deletion of a file)
case S_UNLINKAT: // unlinkat syscall (to prevent deletion of a file)
if (identity_check (drakvuf, info, currpid) == false) {
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intercept_print (info, filename, NULL, currpid);
vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;

break;

switch (info->userid) {

case ROOT: // Cases for filtering root access
if ( filename != NULL ) {
h = g_strdup(filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£111 = "\0';

if (g_hash_table_lookup_extended (s—>filelist_root, h, &k, &v))
e = (entry *)v;
permissions_check2 (drakvuf, filename, e, info, ROOT, INV);
break;

£10] = "\0';

f = g_strrstr(h, "/");

if (g_hash_table_lookup_extended(s—>filelist_root, filename, &k,

&v) ) {
e = (entry *)v;
permissions_check?2 (drakvuf, filename, e, info, ROOT, INV);
}
}
break;
default: // other users
if ( filename != NULL ) {
h = g_strdup (filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£f11] = "\0';
if (g_hash_table_lookup_extended(s—>filelist, h, &k, &v)){
e = (entry *)v;
if (e—->u == info->userid) {

permissions_check?2 (drakvuf, filename, e, info, USER, INV)

break;

}
else if (e->g == info->groupid) {

permissions_check2 (drakvuf, filename, e, info, GROUP, INV

77



break;
}
else {

permissions_check2 (drakvuf, filename, e, info, OTHER, INV

break;
}
break;
}
£[0] = ’"\0';
f = g_strrstr(h, "/");

if (g_hash_table_lookup_extended (s—->filelist, filename, &k, &v))

e = (entry *)v;

if (e—>u == info->userid) {
permissions_check2 (drakvuf, filename, e, info, USER, INV);
break;

} else if (e->g == info->groupid) {
permissions_check?2 (drakvuf, filename, e, info, GROUP, 1INV) ;
break;

} else {

permissions_check?2 (drakvuf, filename, e, info, OTHER, INV) ;

break;
}
}
}
break;
}
break;
case S_TRUNCATE: // unlink syscall (to prevent deletion of a file)
if (identity_check (drakvuf, info, currpid) == false) {

intercept_print (info, filename, NULL, currpid);
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;

break;

switch (info->userid) {

case ROOT: // Cases for filtering root access
if ( filename != NULL ) {
h = g_strdup(filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£111 = "\0';

if (g_hash_table_lookup_extended (s—>filelist_root, h, &k, &v))
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e = (entry *)v;
permissions_check?2 (drakvuf, filename, e, info, ROOT, INV);

break;

f£f[0] = "\O0';
f = g_strrstr(h, "/");

if (g_hash_table_lookup_extended (s—=>filelist_root, filename, &k,

&v) )|
e = (entry =*)v;
permissions_check?2 (drakvuf, filename, e, info, ROOT, INV);
}
}
break;
default: // other users
if ( filename != NULL ) {
h = g_strdup (filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£f11] = "\0';
if (g_hash_table_lookup_extended(s—>filelist, h, &k, &v)){
e = (entry =*)v;
if (e—->u == info->userid) {

permissions_check?2 (drakvuf, filename, e, info, USER, INV)

break;
}
else if (e->g == info->groupid) {

permissions_check2 (drakvuf, filename, e, info, GROUP, INV

break;
}
else {

permissions_check?2 (drakvuf, filename, e, info, OTHER, INV

break;
}
break;
}
£00] = '\0"';
f = g_strrstr(h, "/");

if (g_hash_table_lookup_extended (s—->filelist, filename, &k, &v))

79



e = (entry *)v;

if (e—>u == info->userid) {
permissions_check?2 (drakvuf, filename, e,
break;

} else if (e—->g == info->groupid) {
permissions_check?2 (drakvuf, filename, e,

break;

} else {

permissions_check?2 (drakvuf,

break;

}

break;

}

break;

case S_NAME_TO_HANDLE_AT:
vmi_set_vcpureg (drakvuf->vmi, O,
intercept_print (info, NULL, NULL,

break;

case S_OPEN_BY_HANDLE_AT:
vmi_set_vcpureg (drakvuf->vmi, O,
intercept_print (info, NULL, NULL,

break;

case S_INIT_MOD:
vmi_set_vcpureg (drakvuf->vmi, O,

break;
case S_FINIT_MOD:
vmi_set_vcpureg (drakvuf->vmi, -1,

break;

case S_KEXEC_LOAD:

vmi_set_vcpureg (drakvuf->vmi, O,
vmi_set_vcpureg (drakvuf—->vmi, O,
vmi_set_vcpureg (drakvuf->vmi, O,
vmi_set_vcpureg (drakvuf—->vmi, O,
break;
case S_KEXEC_FILE_LOAD:

vmi_set_vcpureg (drakvuf—->vmi, O,
vmi_set_vcpureg (drakvuf—->vmi, O,
vmi_set_vcpureg (drakvuf—->vmi, O,
vmi_set_vcpureg (drakvuf->vmi, O,
vmi_set_vcpureg (drakvuf->vmi, O,

break;
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case S_FORK:
case S_VFORK:
s—>p_pid = currpid;
if (s—=>task_list[currpid] == NULL) {
add_task (s, currpid, info->userid, info->groupid, process_base, 1) ;
}
intercept_print (info, NULL, NULL, currpid);

break;

case S_CLONE:
s—=>p_pid = currpid;
if (s—>task_list[currpid] == NULL) {
add_task (s, currpid, info->userid, info->groupid, process_base, 1) ;
}
intercept_print (info, NULL, NULL, currpid) ;

break;

case S_EXECVE:
case S_EXECVEAT:

if (identity_check (drakvuf, info, currpid) == false) {
intercept_print (info, filename, NULL, currpid);
vmi_set_vcpureg (drakvuf—->vmi, 0, RSI, info->vcpu) ;

break;

switch (info->userid) {

case ROOT: // Cases for filtering root access
if ( filename != NULL ) {
h = g_strdup (filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
fr1] = '"\0’;

if (g_hash_table_lookup_extended (s—>filelist_root, h, &k, &v)){
e = (entry *)v;

permissions_check2 (drakvuf, filename, e, info, ROOT, INV);

break;

}

£[0] = "\O0';

f = g_strrstr(h, "/");

}
if (g_hash_table_lookup_extended (s—->filelist_root, filename, &k, &
e = (entry *)v;

permissions_check2 (drakvuf, filename, e, info, ROOT, INV);

}
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break;

default: // other users

if (
h =
f o=

NULL ) |
g_strdup (filename) ;
VAR I
NULL) {
"\O0';

filename !=

g_strrstr (h,
(f
f[1] =

while =

if (g_hash_table_lookup_extended (s—->filelist,

, filename,

, filename,

, filename,

e = (entry x)v;
if (e—>u == info->userid) {
permissions_check?2 (drakvuf
break;
}
else if (e—->g == info->groupid) {
permissions_check?2 (drakvuf
)i
break;
}
else {
permissions_check?2 (drakvuf
)i
break;
}
break;
}
£10] = "\O';
f = g_strrstr(h, "/");

if (g_hash_table_lookup_extended (s—->filelist,

filename,

filename,

'= 0){

e = (entry *)v;

if (e—>u == info->userid) {
permissions_check?2 (drakvuf,
break;

} else if (e—->g == info->groupid) {
permissions_check?2 (drakvuf,
break;

} else {

permissions_check?2 (drakvuf,

break;
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break;
}

break;

default:

if ((info->regs—->rax == s—>s_execve) || (info->regs—->rax == s-—>
s_execveat)) {
if (identity_check (drakvuf, info, currpid) == false) {
intercept_print (info, filename, NULL, currpid);
vmi_set_vcpureqg (drakvuf->vmi, 0, RSI, info->vcpu) ;

break;

switch (info->userid) {

case ROOT: // Cases for filtering root access
if ( filename != NULL ) {
h = g_strdup(filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£11]1 = "\0';

if (g_hash_table_lookup_extended (s—>filelist_root, h, &k, &v

e = (entry *)v;

permissions_check?2 (drakvuf, filename, e, info, ROOT, 1INV)

break;

}
£[0] = "\O0';
f = g_strrstr(h, "/");

if (g_hash_table_lookup_extended (s—>filelist_root, filename, &

k, &v)){
e = (entry *)v;
permissions_check?2 (drakvuf, filename, e, info, ROOT, INV) ;
} else {
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked execution of %s for user: %1d
because it was NOT in the SACL.\n", filename, info->userid) ;
}
}
break;
default: // other users
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INV) ;

INV) ;

INV) ;

because

if ( filename != NULL ) {
h = g_strdup (filename) ;
f = g_strrstr(h, "/");
while (f != NULL) {
£f[1] = "\0';
if (g_hash_table_lookup_extended (s—>filelist, h, &k, &v)) {
e = (entry *)v;
if (e—->u == info->userid) {
permissions_check?2 (drakvuf, filename, e, info, USER,
break;
}
else if (e—->g == info->groupid) {
permissions_check2 (drakvuf, filename, e, info, GROUP,
break;
}
else {
permissions_check?2 (drakvuf, filename, e, info, OTHER,
break;
}
break;
}
£[0] = "\0';
f = g_strrstr(h, "/");
}
if (g_hash_table_lookup_extended (s—>filelist, filename, &k, &v
e = (entry *)v;
if (e—->u == info->userid) {
permissions_check?2 (drakvuf, filename, e, info, USER, INV)
break;
} else if (e—->g == info->groupid) {
permissions_check?2 (drakvuf, filename, e, info, GROUP, INV
break;
} else {
permissions_check?2 (drakvuf, filename, e, info, OTHER, INV
break;
}
} else {

vmi_set_vcpureg
intercept_print (info,

printf (" [

it was

NOT

WARNING ]
in the SACL.\n",

84

(drakvuf —>vmi, O

filename,

filename,

NULL,
Blocked execution

, RDI, info->vcpu) ;
currpid) ;
of

info->userid) ;

for user: %1d

%s



break;

} else if ( (info->regs—->rax == s—->s_clone) ||
(info->regs—->rax == s—->s_fork) ||
(info->regs—>rax == s—->s_vfork) ) {

if (identity_check (drakvuf, info, currpid) == false) {

intercept_print (info, filename, NULL, currpid);
vmi_set_vcpureg (drakvuf—->vmi, 0, RSI, info->vcpu) ;
break;

s—->p_pid = currpid;
if (s—>task_list[currpid] == NULL) {
add_task (s, currpid, info->userid, info->groupid, process_base,
1) ;

break;

drakvuf_release_vmi (drakvuf) ;

return O0;

static GSList* create_trap_config(drakvuf_t drakvuf, ferify *xs, symbols_t =«
symbols, const charx rekall_profile) {

GSList =*ret NULL;

unsigned long i, j;

uint64_t sc = 0;
PRINT_DEBUG ("Received %$1lu symbols\n", symbols->count) ;
if ( s—»>o0s == VMI_OS_WINDOWS )

{
printf ("OS not supported.\n");

throw -1;
}
if ( s—>0s == VMI_OS_LINUX )
{

addr_t rva = 0;
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addr_t offset = 0x0001000000000000;

if ( !drakvuf_get_constant_rva (rekall_profile, "_text", &rva) )
return NULL;

S—>rva = rvajy;
addr_t kaslr = drakvuf_get_kernel_base (drakvuf) - rva;
s—>kaslr = kaslr;

for (i=0; i < symbols-—->count; i++)

{

const struct symbol *symbol = &symbols->symbols[i];
if (strcmp (symbol->name, "system_call'") == 0) {
printf ("%$s\n", symbol->name) ;
}
if (strcmp (symbol->name, "ret_from_fork") == 0) {
printf ("[ INFO ] Adding trap to ret_from_fork in %" PRIx64 "\n'",

symbol->rva + kaslr);

drakvuf_trap_t xtrap = (drakvuf_trap_t «*)g_mallocO (sizeof (
drakvuf_trap_t));

trap—>breakpoint.lookup_type = LOOKUP_PID;

trap->breakpoint.pid = 0;

trap—->breakpoint.addr_type = ADDR_VA;

trap—->breakpoint.addr = symbol->rva + kaslr;

trap—->breakpoint .module = "linux";

trap—->name = g_strdup (symbol->name) ;

trap—->type = BREAKPOINT;

trap—->cb = fork_cb;

trap—->data = s;

ret = g_slist_prepend(ret, trap);

s—>fork_ret = symbol->rva + kaslr + offset;

n

if (strncmp (symbol->name, sys_exit", 8) == 0){

PRINT_DEBUG ("[ INFO ] Adding trap to %s at 0x%1lx (kaslr 0x%1lx)\n",
symbol —>name, symbol->rva + kaslr, kaslr);

printf ("[ INFO ] Adding trap to %$s in %" PRIx64 "\n", symbol->name,

symbol ->rva + kaslr) ;

drakvuf_trap_t *trap = (drakvuf_trap_t «*)g_mallocO (sizeof (
drakvuf_trap_t)) ;

trap—->breakpoint.lookup_type = LOOKUP_PID;

trap—->breakpoint.pid = 0;

trap—->breakpoint.addr_type = ADDR_VA;
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trap—->breakpoint.addr

trap—->breakpoint .module

trap->name

symbol->rva + kaslr;

"linux";

g_strdup (symbol —>name) ;

trap—>type = BREAKPOINT;
trap—->cb = exit_cb;
trap—->data = s;

ret

if (strcmp (symbol —>name, "

s—>s_exit

if(strcmp (symbol —>name,

s—>s_exit_group

g_slist_prepend (ret,

trap);

sys_exit") 0)

symbol->rva + kaslr + offset;

"sys_exit_group") 0)

symbol —->rva + kaslr + offset;

if ((strcmp (symbol->name, "sys_open'")) &&
(strcmp (symbol —>name, "sys_openat")) &&
(strcmp (symbol —>name, "sys_link")) &&
(strcmp (symbol —>name, "sys_linkat")) &&
(strcmp (symbol —>name, "sys_fork")) &&
(strcmp (symbol —>name, "sys_clone'")) &&
(strcmp (symbol —>name, "sys_vfork")) &&
(strcmp (symbol —>name, "sys_symlink")) &&
(strcmp (symbol —>name, "sys_symlinkat")) &&
(strcmp (symbol —>name, "sys_execve'")) &&
(strcmp (symbol —>name, "sys_execveat")) &&
(strcmp (symbol —>name, "sys_init_module")) &&
(strcmp (symbol —>name, "sys_finit_module")) &&
// (strcmp (symbol—->name, "sys_close")) &&
(strcmp (symbol —>name, "sys_rename'")) &&
(strncmp (symbol —>name, "sys_renameat", 12)) &&
(strncmp (symbol —>name, "sys_unlink", 10)) &&
(strcmp (symbol —>name, "sys_truncate'")) )
continue;
/* This is the address of the table itself so skip it =*/
if (!strcmp (symbol->name, "sys_call_table") ) {

continue;

PRINT_DEBUG (" [

symbol —>name ,

INFO ]
symbol —>rva
INFO ]

symbol->rva + kaslr) ;

printf (" [

drakvuf_trap_t *trap

drakvuf_trap_t));

trap—->breakpoint.lookup_type

trap—->breakpoint.pid

trap—->breakpoint.addr_type

Adding trap to

Adding trap to

at 0x%1x (kaslr 0x%1lx)\n",

%s

+ kaslr, kaslr);

%$s in %" PRIx64 "\n'",

symbol —>name,

(drakvuf_trap_t *)g_mallocO (sizeof (

LOOKUP_PID;
0;

ADDR_VA;
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trap—->breakpoint.addr = symbol->rva + kaslr;

trap—->breakpoint .module = "linux

"o
’

g_strdup (symbol —>name) ;
BREAKPOINT;

trap—->name =
trap—->type =
trap—->cb = linux_cb;
trap—->data = s;

ret = g_slist_prepend(ret, trap);

if (strcmp (symbol —>name, "

0)

symbol—->rva + kaslr + offset;

sys_open'")
s—>s_open =
else

if (strcmp (symbol —->name, "sys_openat") == 0)

s—>s_openat = symbol->rva + kaslr + offset;

else if (strcmp (symbol->name, "sys_execve'") == 0)
s—>s_execve = symbol->rva + kaslr + offset;

else if(strcmp (symbol->name, "sys_execveat") == 0)
s—>s_execveat = symbol->rva + kaslr + offset;

else if(strcmp (symbol->name, "sys_clone") == 0)
s—>s_clone = symbol->rva + kaslr + offset;

else if(strcmp (symbol—->name, "sys_fork") == 0)
s—=>s_fork = symbol->rva + kaslr + offset;

else if(strcmp (symbol->name, "sys_vfork") == 0)
s—>s_vfork = symbol->rva + kaslr + offset;

else if(strcmp (symbol->name, "sys_rename'") == 0)
s—>s_rename = symbol->rva + kaslr + offset;

else if(strcmp (symbol->name, "sys_renameat") == 0)

s—>s_renameat =
else if (strcmp (symbol->name,
s—>s_renameat?2 =
else if (strcmp (symbol—->name,
s—>s_unlink =
else if(strcmp (symbol->name,
s—>s_unlinkat =
else if(strcmp (symbol->name,

s—>s_truncate =

return ret;

ferify::ferify (drakvuf_t drakvuf,
output) {
FILE xfp = NULL;

char tmp [MAX_PATHNAME_LEN] ;

symbol—->rva + kaslr + offset;

"sys_renameat2") == 0)
symbol—->rva + kaslr + offset;
"sys_unlink") == 0)
symbol—->rva + kaslr + offset;
"sys_unlinkat") == 0)
symbol ->rva + kaslr + offset;
"sys_truncate") == 0)

symbol->rva + kaslr + offset;

const void *config, output_format_t
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int i = 0;
int g = 0;

unsigned int uu, gg, mm;

int len = 0;

int count = 0;

p_files %« file = NULL,* next = NULL;

const char *rekall_profile = (const char «*)config;

char * name;

char filename [MAX_FILENAME_LEN] = { ’"\0'" };

char sudo_file [MAX_FILENAME_LEN] = { “\0" };

char c[11] = { "\0" };

uint32_t sudoer = 0;

entry *x e = NULL, % vl = NULL;

void %« k = NULL, % v = NULL;

this—->filelist = g_hash_table_new_full (g_str_hash, g_str_equal, g_free,
g_free);

this—->filelist_root = g_hash_table_new_full (g_str_hash, g_str_equal,

g_free, g_free);

symbols_t #*symbols = drakvuf_get_symbols_from_rekall (rekall_profile);
if (!symbols)
{
fprintf (stderr, "Failed to parse Rekall profile at $%$s\n",
rekall_profile);
throw —-1;
}
this—->o0s = drakvuf_get_os_type (drakvuf) ;
this—->traps = create_trap_config (drakvuf, this, symbols, rekall_profile);
this—->format = output;
vmi_instance_t vmi = drakvuf_lock_and_get_vmi (drakvuf) ;
this—->reg_size = vmi_get_address_width (vmi); // 4 or 8 (bytes)

drakvuf_release_vmi (drakvuf) ;

vmi_pause_vm (vmi) ;

name = vmi_get_name (vmi) ;

strncat (filename, "/root/", 255 - strlen(filename)) ;
strncat (sudo_file, "/root/", 255 - strlen(sudo_file));
strncat (filename, name, 255 — strlen(filename)) ;

strncat (sudo_file, name, 255 - strlen (sudo_file));
strncat (filename, "_pfiles", 255 - strlen(filename)) ;
strncat (sudo_file, "_sudoers", 255 — strlen(sudo_file)) ;
fp = fopen (sudo_file, "r'");
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printf ("[ INFO ] Reading sudoers: ") ;
if (fp != NULL) {
while (fscanf (fp, "%u'", &sudoer) == 1) {
this—->sudoers[i] = sudoer;
printf ("%u ", sudoer);
i++;
}
}
printf ("\n") ;
fclose (fp) ;
fp = NULL;
fp = fopen(filename, "r'");
if (fp != NULL) {
while (fscanf (fp, "%$s\t%o\t%u\t%u", tmp, &mm, &uu, &gg) == 4){
count ++;
e = (entry *)malloc(sizeof (entry));
if (e == NULL) {
printf ("Error allocating memory in ubuntul_pfiles file.\n");
throw -1;
}
len = strlen (tmp) ;
e->u = uu;
€->g9g = gg;
e—->mode = mm;

if (!g_hash_table_insert (filelist,
printf ("Found duplicate entry.
g_hash_table_lookup_extended (filelist,

vl = (entryx)v;
vl—->mode = mm;
vli->u = uu;
vl->g = gg;
v = NULL;
k = NULL;
}
}
fclose (fp) ;
fp = NULL;
}
printf ("$d\n", count) ;
strncat (filename, "_root", 255 -
fp = fopen(filename, "r'");
if (fp != NULL) {
while (fscanf (fp, "%$s\t%o", tmp,

&mm) ==

g_strdup (tmp) ,
Updating.\n") ;
tmp,

strlen(filename)) ;

2) A
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e = (entry *)malloc(sizeof (entry));
if (e == NULL) {
printf ("Error allocating memory in root ubuntul_pfiles_root file.\n")

throw -1;
}
len = strlen (tmp) ;
e—>mode = mm;
e—>u = 0;
e->g = 0;
if (!g_hash_table_insert (filelist_root, g_strdup (tmp), e)) {

printf ("Found duplicate entry. Updating.\n");
g_hash_table_lookup_extended (filelist_root, tmp, &k, &v);

vl = (entryx)v;
vl->mode = mm;
vli->u = uu;
vli->g = gg;

v = NULL;

k = NULL;

fclose (fp) ;
fp = NULL;
}

drakvuf_free_symbols (symbols) ;

printf ("[ INFO ] Done parsing files.\n");
process_list (drakvuf, this, wvmi);

GSList xloop = this->traps;

vmi_resume_vm (vmi) ;

while (loop) {

drakvuf_trap_t *trap = (drakvuf_trap_t «)loop->data;
if ( 'drakvuf_add_trap (drakvuf, trap) ) {
printf ("Error with trap.\n");
throw -1;
}
loop = loop-—->next;
}
}
ferify::~ferify () |
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int g = 0;

GSList xloop = this->traps;
while (loop) {
drakvuf_trap_t *trap = (drakvuf_trap_t «)loop->data;
g_free ((charx)trap—>name) ;
if (trap—->data != (voidx)this) {
g_free (trap->data) ;
}
g_free (loop->data) ;

loop = loop-—->next;

p_files % current = NULL, *x next = NULL;

for (g = 0;g < 32768;g++) {
if (this->task_list[g] != NULL) {
free (this—->task_1list[q]) ;

g_hash_table_foreach (filelist, free_entry, NULL) ;
filelist_root, free_entry, NULL) ;
filelist) ;

filelist_root);

(
g_hash_table_foreach (
g_hash_table_destroy (
g_hash_table_destroy (

g_slist_free (this—->traps) ;
printf ("[ INFO ] Exited cleanly.\n");

int permissions_check2 (drakvuf_t drakvuf, char *x filename, entry x e,

drakvuf_trap_info_t % info, int id, int reg) {

ferify s = (ferifyx)info->trap—->data;
vmi_pid_t currpid = vmi_dtb_to_pid(drakvuf->vmi, info->regs->cr3);
int r, w, x, id_check;
switch (id) {
case ROOT:
case USER:

r = 0400;
w = 0200;
x = 0100;
if (e—>u != info->userid) {
id_check = 0;
printf ("Process user different than saved user %u vs $1d.\n", e—->u,

info->userid) ;
}

else
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id_check = 1;
break;
case GROUP:
r = 040;
w = 020;
x = 010;
if (e->g != info->groupid)
id_check = 0;
else
id_check
break;
case OTHER:

1;

r = 04;

w = 02;

x = 01;

id_check = 1;

break;
default:

return -1;

switch (info->regs—->rax) {

case S_OPEN:

if ( ((info->regs—->rsi & PERMISSIONS) | O_RDONLY) == O_RDONLY) {
if ( !((e—->mode & r) && (id_check))) {
printf ("$d\t%d", e—->mode, 1) ;

vmi_set_vcpureg (drakvuf—->vmi, 0, RDI, info->vcpu) ;

intercept_print (info, filename, NULL, currpid);

printf ("[ WARNING ] Blocked read access for user: $1d\n", info-»>
userid) ;

return 1;

} else if ( ((info->regs—->rsi & PERMISSIONS) & O_WRONLY) == O_WRONLY)

if ( !((e—>mode & w) && (id_check))) {
vmi_set_vcpureqg (drakvuf—->vmi, 0, RDI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid) ;
printf ("[ WARNING ] Blocked write access for user: $1d\n", info->
userid) ;

return 1;

} else if ( ((info->regs—>rsi & PERMISSIONS) & O_RDWR) == O_RDWR) {
if ( !'((e—>mode & w) && (e—>mode & r) && (id_check)) ) {
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);

printf ("[ WARNING ] Blocked access for user: %1d\n", info->userid
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return 1;
}
else if ( !'((e—>mode & w) && (id_check)) ) {
vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid) ;
printf ("[ WARNING ] Blocked write access for user: $1d\n", info->
userid) ;
return 1;
}
else if ( !((e—->mode & r) && (id_check)) ) {
vmi_set_vcpureqg (drakvuf—->vmi, 1, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked read access for user: $1d\n", info-»>
userid) ;

return 1;

break;
case S_OPENAT:

if ( ((info->regs—->rsi & PERMISSIONS) | O_RDONLY) == O_RDONLY) {
if ( !((e->mode & r) && (id_check))) {
vmi_set_vcpureqg (drakvuf—->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked read access for user: $1d\n", info-»>
userid) ;
return 1;
}
} else if ( ((info—->regs—->rsi & PERMISSIONS) & O_WRONLY) == O_WRONLY)

if ( !((e->mode & w) && (id_check))) {
vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked write access for user: $1d\n", info->

userid) ;

return 1;

}

} else if ( ((info->regs—->rsi & PERMISSIONS) & O_RDWR) == O_RDWR) {

if ( !((e->mode & w) && (e—->mode & r) && (id_check)) ) {
vmi_set_vcpureqg (drakvuf->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);

printf ("[ WARNING ] Blocked access for user: %1d\n", info->userid

return 1;

}
else if ( !((e—>mode & w) && (id_check)) ) {

vmi_set_vcpureg (drakvuf->vmi, 0, RDX, info->vcpu) ;
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intercept_print (info, filename, NULL, currpid);

printf ("[ WARNING ] Blocked write access for user: $1d\n", info->
userid) ;
return 1;
}
else if ( !((e->mode & r) && (id_check)) ){
vmi_set_vcpureg (drakvuf—->vmi, 1, RDX, info->vcpu) ;
intercept_print (info, filename, NULL, currpid) ;
printf ("[ WARNING ] Blocked read access for user: $1d\n", info-»>
userid) ;
return 1;
}
}
break;

case S_RENAME:
case S_LINK:
case S_SYMLINK:

if (reg == SOURCE) {
if ( !((e—->mode & r) && (e—->mode & w) && (id_check)) ) |
vmi_set_vcpureqg (drakvuf—->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureqg (drakvuf—->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid) ;
printf ("[ WARNING ] Blocked read access for user: $1d\n", info-»>
userid) ;
return 1;
}
} else 1if (reg == DEST) {
if ( !((e—>mode & w) && (id_check)) ) {

vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked write access for user: $1d\n", info->
userid) ;

return 1;

}

break;

case S_RENAMEAT:
case S_RENAMEAT2:
case S_LINKAT:

if (reg == SOURCE) {
if ( !((e—>mode & r) && (e—>mode & w) && (id_check)) ) {
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureg (drakvuf—->vmi, 0, RSI, info->vcpu) ;

intercept_print (info, filename, NULL, currpid);
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printf ("[ WARNING ] Blocked read access for user: %1d\n", info->
userid) ;
return 1;
}
} else if (reg == DEST) {
if ( !((e->mode & w) && (id_check)) ) |
vmi_set_vcpureqg (drakvuf—->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureqg (drakvuf—->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid) ;
printf ("[ WARNING ] Blocked write access for user: $1d\n", info->
userid) ;

return 1;

break;
case S_SYMLINKAT:

if (reg == SOURCE) {
if ( !((e->mode & r) && (e—->mode & w) && (id_check)) ) {
vmi_set_vcpureqg (drakvuf—->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureqg (drakvuf—->vmi, 0, RDX, info->vcpu) ;
intercept_print (info, filename, NULL, currpid) ;
printf ("[ WARNING ] Blocked read access for user: $1d\n", info-»>
userid) ;
return 1;
}
} else if (reg == DEST) {
if ( !((e—>mode & w) && (id_check)) ) {
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
vmi_set_vcpureg (drakvuf->vmi, 0, RDX, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked write access for user: $1d\n", info->
userid) ;

return 1;

break;
case S_UNLINK:

if ( !((e—>mode & w) && (id_check)) ) {
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked delete for user: %$1d\n", info->userid) ;

return 1;
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}

break;

case S_UNLINKAT:

if ( !((e—->mode & w) && (id_check)) ) {
vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked delete for user: %$1d\n",
return 1;

}

break;

case S_TRUNCATE:

if ( !'((e—>mode & w) && (id_check)) ) |

vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;

intercept_print (info, filename, NULL, currpid);

printf (" [ WARNING ] Blocked truncate for user: %1ld\n",

return 1;

}

break;

case S_EXECVE:

if ( !'((e—>mode & x) && (e—>mode & r) && (id_check)) )

vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;

intercept_print (info, filename, NULL, currpid);

printf ("[ WARNING ] Blocked execution of %$s for user:

filename, info->userid) ;
return 1;

}

break;

case S_EXECVEAT:

if ( !'((e—>mode & x) && (id_check)) ) {

vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;

intercept_print (info, filename, NULL, currpid);

printf ("[ WARNING ] Blocked execution of %s for user:

filename, info->userid) ;
return 1;
}
break;

default:

if (info->regs—->rax == s—>s_execve) {
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if ( !((e—>mode & x) && (e—>mode & r) && (id_check)) ) |
vmi_set_vcpureg (drakvuf->vmi, 0, RDI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked execution of %s for user: %1d\n",
filename, info->userid);

return 1;

} else if (info->regs—->rax == s—->s_execveat) {

if ( !'((e—>mode & x) && (e—>mode & r) && (id_check)) ) {
vmi_set_vcpureg (drakvuf->vmi, 0, RSI, info->vcpu) ;
intercept_print (info, filename, NULL, currpid);
printf ("[ WARNING ] Blocked execution of %s for user: %1d\n",
filename, info->userid) ;

return 1;

}
break;
}

return O0;

void intercept_print (drakvuf_trap_info_t xinfo, char % filename, char x

filename2, vmi_pid_t currpid) {

ferify s = (ferifyx)info->trap—->data;

uint64_t mode = 0;

switch (info—->regs—->rax) {

case S_OPEN:

if ((info->regs—->rsi & O_CREAT) == O_CREAT)
mode = info->regs->rdx;
printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIxX64 " ,%s PID:%d [%$1d:%1d] wants %lo access to file: %s (mode:%1lo)\n
”!
info->regs—->rax, info->regs->cr3, info->regs—->rdi, info->procname,

currpid, info->userid, info->groupid, info->regs->rsi, filename,
mode) ;
break;

case S_OPENAT:

if ((info->regs—->rdx & O_CREAT) == O_CREAT)
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mode = info->regs->rl0;

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIxX64 " ,%s PID:%d [%1d:%1d] wants %lo access to file: %s (mode:%1lo)\n
”l
info->regs—->rax, info->regs->cr3, info->regs->rsi, info->procname,
currpid, info->userid, info->groupid, info->regs->rdx, filename,
mode) ;
break;

case S_RENAME:

printf ("[SYSCALL: %3" PRIu64 "] RDI: 0x%—-12" PRIx64 " RSI: Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] wants to execute move with file: %$s\n",

info->regs—>rax, info->regs->rdi, info->regs->rsi, info->procname,
currpid, info->userid, info->groupid, filename) ;

break;

case S_RENAMEAT:
case S_RENAMEAT2:

printf ("[SYSCALL: %3" PRIu64 "] RDI: 0x%-12" PRIx64 " RSI: 0Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] wants to execute move with file: %$s\n",
info->regs—->rax, info->regs->rsi, info->regs->rl0, info->procname,

currpid, info->userid, info->groupid, filename) ;

break;

case S_UNLINK:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIxX64 " ,%s PID:%d [%$1d:%1d] wants to delete file %$s\n",

info->regs—>rax, info->regs->cr3, info->regs—->rdi, info->procname,
currpid, info->userid, info->groupid, filename) ;

break;

case S_EXECVE:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%—-12"
PRIx64 " ,%s PID:%d [%1d:%1d] wants to execute file %s\n",
info->regs—->rax, info->regs->cr3, info->regs->rdi, info->procname,
currpid, info->userid, info->groupid, filename) ;
break;

case S_EXECVEAT:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIxX64 " ,%s PID:%d [%$1d:%1d] wants to execute file %$s\n'",

info->regs—>rax, info->regs->cr3, info->regs—->rdi, info->procname,
currpid, info->userid, info->groupid, filename) ;

break;

99



case S_UNLINKAT:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] wants to delete file %$s\n",
info->regs—->rax, info->regs->cr3, info->regs->rdi, info->procname,
currpid, info->userid, info->groupid, filename) ;
break;

case S_TRUNCATE:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIx64 " ,%s PID:%d [%$1d:%1d] wants to truncate file %$s to size %"

PRIu64 "\n",
info->regs—>rax, info->regs->cr3, info->regs—->rdi, info->procname,
currpid, info->userid, info->groupid, filename, info->regs-—->rsi);
break;

case S_CLOSE:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] wants to close fd %" PRIu64 ".\n",
info->regs—->rax, info->regs->cr3, info->regs->rdi, info->procname,
currpid, info->userid, info->groupid, info->regs->rdi);
break;

case S_EXIT:

if (s—=>task_list[currpid]—->threads == 0)
printf ("[SYSCALL: %$3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: 0Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] is exiting. Deleting from s—->task_list.\n

"
’

info->regs—->rax, info->regs->cr3, info->regs-—->rdi, info->procname

currpid, info->userid, info->groupid) ;

else
printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] is exiting. Deleting thread.\n",
info->regs—->rax, info->regs—->cr3, info->regs->rdi, info->procname

currpid, info->userid, info->groupid) ;

break;

case S_EXIT_GROUP:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] is exiting. Deleting from s—->task_list.\n

"
’

info->regs—>rax, info->regs->cr3, info->regs—->rdi, info->procname,
currpid, info->userid, info->groupid) ;

break;
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case S_CLONE:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%—-12"
PRIx64 " ,%s PID:%d [%1d:%1d] is cloning.\n",
info->regs—->rax, info->regs->cr3, info->regs->rdi, info->procname,

currpid, info->userid, info->groupid) ;

break;

case S_FORK:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: 0x%—-12"
PRIx64 " ,%s PID:%d [$1d:%1d] is forking.\n",

info->regs—>rax, info->regs->cr3, info->regs—->rdi, info->procname,
currpid, info->userid, info->groupid) ;

break;

case S_VFORK:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIx64 " ,%s PID:%d [%1d:%1d] is forking.\n",
info->regs—->rax, info->regs->cr3, info->regs->rdi, info->procname,

currpid, info->userid, info->groupid) ;

break;

case S_NAME_TO_HANDLE_AT:
case S_OPEN_BY_HANDLE_AT:

printf ("[SYSCALL: %3" PRIu64 "] CR3:0x%-10" PRIx64 ", RDI: Ox%-12"
PRIx64 " ,%s PID:%d [%$1d:%1d]. [ WARNING ] Not supported\n",

info->regs—>rax, info->regs->cr3, info->regs—->rdi, info->procname,

currpid, info->userid, info->groupid) ;

break;
default:
if (info->regs—->rax == s—>s_clone)
printf ("[SYSCALL: 56] CR3:0x%-10" PRIx64 ", RDI: 0x%—-12" PRIx64 "

,%s PID:%d [%1d:%1d] is clonig\n",
info->regs->cr3, info->regs->rdi, info->procname,

currpid, info->userid, info->groupid) ;

else if (info->regs—->rax == s—>s_execve)
printf ("[SYSCALL: 59] CR3:0x%-10" PRIx64 ", RDI: 0x%-12" PRIx64 "

,%s PID:%d [%$1d:%1d] is executing %s\n",
info->regs—->cr3, info->regs->rdi, info->procname,

currpid, info->userid, info->groupid, filename) ;

else if (info->regs—->rax == s—>s_execveat)
printf ("[SYSCALL: 59] CR3:0x%—-10" PRIx64 ", RDI: 0x%-12" PRIx64 "

,%s PID:%d [%$1d:%1d] is executing %s\n'",

info->regs—->cr3, info->regs->rdi, info->procname,
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currpid, info->userid, info->groupid, filename) ;

char * get_pathname (drakvuf_t drakvuf, drakvuf_trap_info_t <*info, char =«

filename, int append_filename) {

char * ret, % cut;

int tmp;

if (filename[O0] !'= '/’"){
if ( (filename[0] == '.') && (filename[l] == '/") ) {
filename += 2;
ret = drakvuf_get_current_process_parent_folder (drakvuf, info->vcpu);
ret = (char «x)realloc(ret, strlen(ret) + strlen(filename) + 1) ;
if (append_filename)

strcat (ret, filename) ;

filename = ret;

} else if((filename[0] == '.’) && (filename[l] == '".")){
ret = drakvuf_get_current_process_parent_folder (drakvuf, info->vcpu) ;
while ( (filename[0] == '.') && (filename[l] == '.") ){

filename += 2;

tmp = strlen(ret) ;
ret[tmp — 1] = "\0';

cut = strrchr(ret, '/');
xcut = '"\0';

filename++;

}

filename ——;

if (append_filename) {
ret = (char =x)realloc(ret, strlen(ret) + strlen(filename) + 1) ;
strcat (ret, filename) ;

}

filename = ret;
} else {
ret = drakvuf_get_current_process_parent_folder (drakvuf, info->vcpu) ;

if (append_filename) {
ret = (char =x)realloc(ret, strlen(ret) + strlen(filename) + 1) ;
strcat (ret, filename) ;

}

filename = ret;

}

return filename;



char % get_dirfd(drakvuf_t drakvuf, drakvuf_trap_info_t <xinfo,
vmi_instance_t wvmi, char xfilename, vmi_pid_t currpid, addr_t

process_base) {

addr_t fs, pwd, dentry, parent, parent_name, parent_d_name, d_name, name,

fdd, path;
char % dirfd = NULL;
addr_t files = 0, fd_array = 0, filp = 0, f_dentry = 0, f_name = 0, fdt =
0;
access_context_t ctx;
char slash([] = "/";
char % dir = NULL;
char %% strings = (char «%)calloc(sizeof (char %), 10);
char %% strings_ = (char «*%)calloc(sizeof (char %), 10);
char = ret = (char =x)calloc (4096, 1);
int i = 0, qg;
ctx = {
.translate_mechanism = VMI_TM_PROCESS_DTB,
.dtb = drakvuf->regs|[info->vcpul]l->cr3,
.addr = process_base + drakvuf->0ffsets[TASK_STRUCT_FILES]
bi
if ( VMI_FAILURE == vmi_read_addr (vmi, &ctx, &files) ) {
printf ("[ ERROR ] Could not read task_struct files entry for PID %d\n",
currpid) ;

vmi_resume_vm (vmi) ;

return 0;

ctx.addr = files 4+ drakvuf->offsets[FILES_STRUCT_FDT];
if (VMI_FAILURE == vmi_read_addr (vmi, é&ctx, &fdt)) {
printf ("[ ERROR ] Could not read fdt for PID %d.\n", currpid);

vmi_resume_vm (vmi) ;

return 0;

ctx.addr = fdt + drakvuf->o0ffsets[FDTABLE_FD];
if (VMI_FAILURE == vmi_read_addr (vmi, &ctx, &fd_array)) {
printf ("[ ERROR ] Could not read fd_array for PID %$d.\n", currpid);

vmi_resume_vm (vmi) ;

return 0;

ctx.addr = fd_array + (8 % (info->regs-—->rdi)) ;
if (VMI_FAILURE == vmi_read_addr (vmi, é&ctx, &filp)) {
printf ("[ ERROR ] Could not read fd_array for PID %d.\n", currpid);

vmi_resume_vm (vmi) ;
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return 0;

ctx.addr = filp + drakvuf->offsets[FILE_STRUCT_F_PATH] + drakvuf->offsets
[PATH_STRUCT_DENTRY];
if (VMI_FAILURE == vmi_read_addr (vmi, &ctx, &dentry)) {
printf ("[ ERROR ] Could not read fd_array for PID %d.\n", currpid);
vmi_resume_vm (vmi) ;
return 0;
}
d_name = dentry + drakvuf->o0ffsets[DENTRY_STRUCT_DNAME];
ctx.addr = d_name + drakvuf->o0ffsets[QSTR_STRUCT_NAME];
if ( VMI_FAILURE == vmi_read_addr (vmi, &ctx, &name) ) {
printf ("[ ERROR ] Could not read fd_array for PID %d.\n", currpid);
vmi_resume_vm (vmi) ;
return O0;
}
ctx.addr = name;
dirfd = vmi_read_str (vmi, &ctx);
strings[i++] = dirfd;
parent = dentry;
if (strcmp (slash, dirfd) != 0) {
while (strcmp (slash, wvmi_read_str (drakvuf->vmi, &ctx)) != 0){
ctx.addr = parent + drakvuf->0ffsets[DENTRY_STRUCT_PARENT];
if ( VMI_FAILURE == vmi_read_addr (drakvuf->vmi, &ctx, &parent) )
return NULL;
parent_d_name = parent + drakvuf->offsets[DENTRY_STRUCT_DNAME];
ctx.addr = parent_d_name 4+ drakvuf->0ffsets[QSTR_STRUCT_NAME];
if ( VMI_FAILURE == vmi_read_addr (drakvuf->vmi, &ctx, &parent_name)

return NULL;

ctx.addr = parent_name;
strings[i++] = vmi_read_str (drakvuf->vmi, &ctx);
if (i > 9) {
strings_ = strings;
*strings = (char *)malloc (sizeof (char %) *x (i + 1)) ;
if (strings == NULL) {
printf ("{ ERROR ] Cannot allocate memory.\n");

vmi_resume_vm (vmi) ;
return O0;

}
for(int g = 0;g9 < 1i;qg9++){
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strings[g] = strings_[qgl;
}

free(strings_) ;

strcat (ret, slash);
for (g = i - 279 >= 0;9--){
strcat (ret, stringsl[qgl);

strcat (ret, slash);

dir = (charx)malloc(strlen(ret) + strlen(filename) + 2);
strncpy (dir, ret, strlen(ret) + 1);

strncat (dir, filename, strlen(filename) + 1) ;
free(filename) ;

free (ret) ;

return dir;

void process_list (drakvuf_t drakvuf, ferify % s, vmi_instance_t wvmi) {
int counter = 0;
addr_t 1list_head = 0, next_list_entry = 0, prev_list_entry = 0;
addr_t current_process = 0, cred = 0, real_cred = 0;
uid_t wuid = -1, suid = -1, euid = -1;
gid_t gid = -1, sgid = -1, egid = -1;
uid_t r_uid = -1, r_suid = -1, r_euid = -1;
gid_t r_gid = -1, r_sgid = -1, r_egid = -1;
char *procname = NULL;

vmi_pid_t pid = 0;
unsigned long tasks_offset = 0, pid_offset = 0, name_offset = 0;

status_t status;

tasks_offset = vmi_get_offset (vmi, "linux_tasks");

name_offset = vmi_get_offset (vmi, "linux_name");

pid_offset = vmi_get_offset (vmi, "linux_pid");

list_head = vmi_translate_ksym2v (vmi, "init_task") + tasks_offset;
next_list_entry = list_head;

/* walk the task list =/
do {

current_process = next_list_entry - tasks_offset;
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procname = vmi_read_str_va(vmi, current_process + name_offset, 0);

if (!procname) {
printf ("[ ERROR ] Failed to find procnamel\n") ;

if (vmi_read_addr_va (vmi, current_process + drakvuf->offsets]

TASK_STRUCT_CRED], 0, &cred) == VMI_FAILURE) {
printf ("[ ERROR ] Failed to read cred struct\n");
}

if(vmi_read_addr_va (vmi, current_process + drakvuf->offsets]|

TASK_STRUCT_REAL_CRED], 0, &real_cred) == VMI_FAILURE) {
printf ("[ ERROR ] Failed to read cred struct\n");

if(vmi_read_32_va(vmi, cred + drakvuf->offsets[CRED_UID], 0, &uid) ==
VMI_FAILURE) {
printf ("[ ERROR ] Failed to read uid\n");
}
if(vmi_read_32_va(vmi, cred + drakvuf->offsets[CRED_GID], 0, &gid) ==
VMI_FAILURE) {
printf ("[ ERROR ] Failed to read gid\n");
}
if (VMI_FAILURE == vmi_read_32_va(vmi, current_process + pid_offset,
(uint32_t*) &pid))
continue;
add_task (s, pid, wuid, gid, current_process, 0);
counter += 1;
printf ("%$3d. [%$5d] %$-20s ( %$5u:%-5u ) (struct addr:%" PRIx64 ")\n",
counter, pid, procname, uid, gid, current_process) ;
status = vmi_read_addr_va(vmi, next_list_entry, 0, &next_list_entry);
if (status == VMI_FAILURE) {
printf ("[ ERROR ] Failed to read next pointer in loop at % PRIx64
n", next_list_entry);
}
} while(next_list_entry != list_head);
printf ("[ INFO ] Found and added %d processes.\n", counter) ;
return;

static event_response_t fork_cb (drakvuf_t drakvuf, drakvuf_trap_info_t =

info) {
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ferify xs = (ferifyx)info->trap->data;

addr_t parent_process = 0, child_process = 0, parent_cred = 0,
= 0, t_process = 0;

vmi_pid_t parent_pid = -1, child_pid = -1, t_pid = -1;

unsigned long tasks_offset = 0, pid_offset = 0, name_offset = 0;

vmi_instance_t wvmi = NULL;

char %« parent_name = NULL, +*child_name = NULL, *xt_name = NULL;

uid_t parent_uid = -1, child_uid = -1, t_uid = -1;

gid_t parent_gid = -1, child_gid = -1, t_gid = -1;

task %t = NULL;

int i = 0;

int p_pid = s—->p_pid;

s—=>p_pid = -1;

vmi = drakvuf_lock_and_get_vmi (drakvuf) ;

drakvuf_release_vmi (drakvuf) ;

tasks_offset = vmi_get_offset (vmi, "linux_tasks");

name_offset = vmi_get_offset (vmi, "linux_name");

pid_offset = vmi_get_offset (vmi, "linux_pid");

// Get parent and child process base address
parent_process = info->regs->rax;

child_process = drakvuf_get_current_process (drakvuf,
// Get parent and child pid

vmi_read_32_va (vmi, parent_process + pid_offset, O,

parent_pid) ;

child_pid = vmi_dtb_to_pid(vmi, info->regs->cr3);
if ( (parent_pid == -1) || (child_pid == -1) ) {
printf ("[ ERROR ] ret_from_fork returned -1.\n");

return 0;

// Get parent and child procname

parent_name = vmi_read_str_va(vmi, parent_process

child_name = vmi_read_str_va (vmi,
// Get parent and child uid and gid
if(vmi_read_addr_va (vmi,
TASK_STRUCT_CRED], O,
ERROR ] Failed to

parent_process
&parent_cred) ==
printf (" [ read cred struct\n");
}
if(vmi_read_addr_va (vmi, child_process
TASK_STRUCT_CRED], 0, &child_cred)

ERROR ] Failed to read cred

printf (" [ struct\n") ;
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}
if(vmi_read_32_va(vmi, parent_cred + drakvuf->offsets[CRED_UID], 0, &

parent_uid) == VMI_FAILURE) {
printf ("[ ERROR ] Failed to read uid\n");
}
if(vmi_read_32_va(vmi, parent_cred + drakvuf->offsets[CRED_GID], 0, &
parent_gid) == VMI_FAILURE) {
printf ("[ ERROR ] Failed to read gid\n");
}
if(vmi_read_32_va(vmi, child_cred + drakvuf->offsets[CRED_UID], 0, &
child_uid) == VMI_FAILURE) {
printf ("[ ERROR ] Failed to read uid\n");
}
if(vmi_read_32_va(vmi, child_cred + drakvuf->offsets[CRED_GID], 0, &
child_gid) == VMI_FAILURE) {
printf ("[ ERROR ] Failed to read gid\n");
}
if (p_pid !'= -=-1) {
if (p_pid == parent_pid) {
if (s—>task_list[parent_pid] == NULL) {

if (add_task (s, parent_pid, parent_uid, parent_gid, parent_process,
0) == -1){

printf ("[ ERROR ] Could not add parent process to the task_list.\
n'");
}
}
if (s—>task_list[child_pid] == NULL) {
if (add_task (s, child_pid, child_uid, child_gid, child_process, 0)
== -1)¢{
printf ("[ ERROR ] Could not add child process to the task_list.\n
")
}
}
else {
s—>task_list[child_pid]—->threads++;
}
} else 1f (p_pid == child_pid) {

t_pid = parent_pid;
parent_pid = child_pid;
child_pid = t_pid;
t_uid = parent_uid;
parent_uid = child_uid;
child_uid = t_uid;
t_gid = parent_gid;
parent_gid = child_gid;
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child_gid = t_gid;
t_process = parent_process;
parent_process = child_process;

child_process = t_process;

if (s—>task_list[parent_pid] == NULL) {
if (add_task (s, parent_pid, parent_uid, parent_gid, parent_process,

0) == -1){

printf ("[ ERROR ] Could not add parent process to the task_list.\
n'");
}
}
if (s—->task_list[child_pid] == NULL) {
if (add_task (s, child_pid, child_uid, child_gid, child_process, 0)
== -1)¢{
printf ("[ ERROR ] Could not add child process to the task_list.\n
")
}
}
else {

s—>task_list[child_pid]—->threads++;

} else {
printf ("[ WARNING ] Lost track of parent process forking.\n");

return 0;

printf ("[ INFO ] Process [%u] ( %5u:%-5u ) added to task list from parent
$d.\n", child_pid, child_uid, child_gid, p_pid);

if (s—>task_list[parent_pid] == NULL) {
if (add_task (s, parent_pid, parent_uid, parent_gid, parent_process, 0)
= 0)
return 0;

if ((parent_uid == ROOT) && (s—>task_list[parent_pid]->uid != ROOT)) {
while (s—=>sudoers[i] != 0) {
if(s=>task_list[parent_pid]->uid == s—->sudoers[i]) {
s—>task_list [parent_pid]—->uid = parent_uid;
}
i++;

}
if (s—=>task_list[parent_pid]->uid < 1000) {

s—>task_list [parent_pid]—->uid = parent_uid;
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if (s—>task_list [parent_pid]->uid != parent_uid) {

printf ("[ WARNING ] Found corrupted credentials in task %u. UID is %u
and should be %$1d\n", parent_pid, parent_uid, s—->task_list[parent_pid
]=>uid) ;

s—>task_list [child_pid]—->uid = s—>task_list[parent_pid]->uid;

}

} else if ((parent_uid != s—->task_list[parent_pid]->uid) && (s—->task_list
[parent_pid]-=>uid != ROOT)) {
//TODO: check for system users
printf ("[ WARNING ] Found corrupted credentials in task %u. UID is %u
and should be %$1d\n\t", parent_pid, parent_uid, s—->task_list[parent_pid
]—>uid) ;
s—>task_list[child_pid]—->uid = s—>task_list[parent_pid]->uid;

return O0;

int identity_check (drakvuf_t drakvuf, drakvuf_trap_info_t *x info, vmi_pid_t

current_pid) {

ferify s = (ferifyx)info->trap->data;
int flag = 1, i = 0;
addr_t process = info->regs-—->cr3; // drakvuf_get_current_process (drakvuf,

info->vcpu) ;

if (s—>task_list[current_pid] != NULL) {
if ((s—>task_list[current_pid]—->checked == 0) && (s—>task_list ]|
current_pid]->task_addr != process)) {
printf ("[ INFO ] Updating PID %d address base from %" PRIx64 " to %"
PRIx64 ".\n",
current_pid, s—->task_list[current_pid]->task_addr, process);
s—>task_list [current_pid]->task_addr = process;
s—>task_list [current_pid]—->checked = 1;
} else if (s—>task_list[current_pid]->checked == 0) {
s—>task_list [current_pid]->checked = 1;
}
if (process != s—>task_list[current_pid]->task_addr) {
//TODO
// printf ("[ WARNING ] Current process PID: %$d-%s base seems
different: %" PRIx64 " saved: %" PRIx64 ".\n", current_pid, info->

procname, process, s—>task_list[current_pid]->task_addr);

}
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switch (info—->userid) {
case ROOT:

if ((s—>task_list[current_pid] != NULL) && (s—>task_list[current_pid
]->uid != 0)) {
flag = 0;
while (s—>sudoers[i] != 0) {
if (s—->task_list[current_pid]->uid == s—->sudoers[i]) {
flag = 1;
break;
}
i++;
}
}
if (flag == 0) {
if ((s—->task_list[current_pid]->uid == 118) || (s—>task_list ][
current_pid]->uid < 100)) {
flag = 1;
break;
}
printf ("[ WARNING ] Process root identity corruption detected in
task %$u! Is %" PRIu64 " and should be %$1d. Invalidating syscall.\n\t",

current_pid, info->userid, s—->task_list[current_pid]l->uid);

}

break;
default:
if (s—>task_list[current_pid] != NULL) {
if ((info->userid != s—->task_list[current_pid]->uid) && (info->
userid < 1000)) |
if (s—>task_list[current_pid]->uid == 0) {
s—>task_list [current_pid]—->uid = (uid_t)info->userid;
s—>task_list [current_pid]->gid = (gid_t)info->groupid;
printf ("[ INFO ] Assessing valid user change from 0 to %1d for
[$u]\n", info->userid, current_pid) ;
break;
}
printf ("[ WARNING ] Process root identity corruption detected in
task %$u! Is %" PRIu64 " and should be %$1d. Invalidating syscall.\n\t",
current_pid, info->userid, s—>task_list[current_pid]->uid) ;
flag = 0;
}
}
break;

}

return flag;
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static event_response_t exit_cb (drakvuf_t drakvuf, drakvuf_trap_info_t «*

info) {
ferify s = (ferifyx)info->trap—->data;
vmi_instance_t wvmi = NULL;
vmi_pid_t current_pid = 0;
vmi = drakvuf_lock_and_get_vmi (drakvuf) ;

drakvuf_release_vmi (drakvuf) ;
if (vmi == NULL) {
printf ("Could not get wvmi.\n");
return -1;
current_pid = vmi_dtb_to_pid(vmi, info->regs-—->cr3) ;
if (current_pid == 0) {

printf ("Could not get pid.\n");

return -1;
switch (info->regs-—->rax) {
case S_EXIT_GROUP:
free(s—>task_list[current_pid]) ;
s—>task_list[current_pid] = NULL;
break;
case S_EXIT:

s—>task_list[current_pid]->threads—-—;

break;

int add_task (ferify « £, vmi_pid_t current_pid, uid_t u, gid_t g, addr_t

process, short checked) {

task * t = (task =x)calloc(sizeof (task), 1) ;
if (t == NULL) {
printf ("[ ERROR ] Could not allocate memory.\n");

return -1;

112



t—->pid = current_pid;
t—>uid = (uint64_t) u;
t—->gid = g;

t—->task_addr = process;
t—>threads++;

t—>checked = checked;
f->task_list[current_pid] = t;
t = NULL;

return O0;

void check_syscall_table_corruption(ferify % s, drakvuf_trap_info_t % info)

{

switch (info->regs->rax) {

case S_OPEN:

if ((uint64_t)info->regs—>rip != (uint64_t)s—->s_open)
printf ("[ ERROR ] Corruption in sys_open %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs-—->rip, s—->s_open);
break;

case S_RENAME:

if ((uint64_t)info—->regs—>rip != (uint64_t)s—->s_rename)
printf ("[ ERROR ] Corruption in sys_rename %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs—->rip, s—>s_rename) ;
break;

case S_UNLINK:

if ((uint64_t)info->regs—>rip != (uint64_t)s—->s_unlink)
printf ("[ ERROR ] Corruption in sys_unlink %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs->rip, s->s_unlink);
break;

case S_TRUNCATE:

if ((uint64_t)info->regs—>rip != (uint64_t)s—>s_truncate)
printf ("[ ERROR ] Corruption in sys_truncate %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs-—->rip, s—->s_truncate) ;
break;

case S_OPENAT:

if ((uint64_t)info—->regs—>rip != (uint64_t)s—->s_openat)
printf ("[ ERROR ] Corruption in sys_openat %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs—->rip, s—->s_openat) ;
break;

case S_UNLINKAT:
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if ((uint64_t)info—->regs—>rip != (uint64_t)s—>s_unlinkat)

printf ("[ ERROR ] Corruption in sys_unlinkat %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs->rip, s->s_unlinkat);
break;

case S_RENAMEAT:

if ((uint64_t)info->regs—>rip != (uint64_t)s—>s_renameat)
printf ("[ ERROR ] Corruption in sys_renameat %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs—->rip, s—->s_renameat) ;
break;

case S_RENAMEAT2:

if ((uint64_t)info->regs—>rip != (uint64_t)s—->s_renameat?2)
printf ("[ ERROR ] Corruption in sys_renameat2 %" PRIx64 " instead
of saved RIP: %" PRIx64 "\n'", info->regs—>rip, s—>s_renameat2);
break;

case S_EXIT:

if ((uint6d4_t)info->regs—>rip != (uint6d4_t)s—->s_exit)
printf ("[ ERROR ] Corruption in sys_exit %" PRIx64 " instead of
saved RIP: %" PRIx64 "\n", info->regs-—->rip, s-—->s_exit);
break;

case S_EXIT_GROUP:

if ((uint64_t)info->regs—>rip != (uint64_t)s—->s_exit_group)
printf ("[ ERROR ] Corruption in sys_exit_group %" PRIx64 " instead
of saved RIP: %" PRIx64 "\n", info->regs—->rip, s—->s_exit_group);
break;
}
return;

char % get_pathname_from_reg (drakvuf_t drakvuf, drakvuf_trap_info_t =xinfo,

vmi_instance_t wvmi, vmi_pid_t currpid, int reg) {

char « filename = NULL;
int len = 0;
reg_t regl;

switch (reg) {
case 1:
regl = info->regs-—->rdi;
break;
case 2:
regl = info->regs-—->rsi;

break;
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default:
return NULL;

break;
}
filename = vmi_read_str_va(vmi, regl, currpid);
if (filename == NULL) {
printf ("[ ERROR ] Syscall [ %3" PRIi64 " ] Could not read filename (0x%
" PRIx64 ") for PID %d: %$s.\n", info->regs—>rax, regl, currpid, info->

procname) ;

return NULL;
}

filename = get_pathname (drakvuf, info, filename, TRUE) ;
len = strlen(filename) ;
if (len > MAX_PATHNAME_LEN) {
printf ("[ WARNING ] Weird filename length detected for PID %d.
Truncating.\n\n", currpid);
filename [0] = '\O0';
len = 0;

return filename;

char % get_pathname_from_reg_at (drakvuf_t drakvuf, drakvuf_trap_info_t =«

info, vmi_instance_t wvmi, vmi_pid_t currpid, addr_t process_base, int

reg) {
char x filename = NULL;
int len = 0;

addr_t addr = 0;

reg_t regl, reg2;
switch (reg) {

case 2:
regl = info->regs-—->rdi;
reg2 = info->regs->rsij;
break;

case 3:
regl = info->regs—->rsi;
reg2 = info->regs-—->rdx;
break;

case 4:
regl = info->regs-—->rdx;
reg2 = info->regs—->r1l0;
break;
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default:
return NULL;

break;
}
addr = vmi_translate_uv2p (vmi, reg2, currpid);
if (addr == 0) {
printf ("[ ERROR ] Syscall [ %3" PRIi64 " ] Could not read address: %"
PRIx64 " address for PID %d.\n", info->regs—->rax, reg2, currpid);

return NULL;
}

filename = vmi_read_str_pa (vmi, addr) ;

if (filename == NULL) {
printf ("[ ERROR ] Syscall [ %3" PRIi64 " ] Could not read filename for
PID %d: %s.\n", info->regs—->rax, currpid, info->procname) ;

return NULL;

if ((regl == AT_FDCWD1l) || (regl == AT_FDCWD2)) {
filename = get_pathname (drakvuf, info, filename, TRUE) ;
} else {
filename = get_dirfd (drakvuf, info, wvmi, filename, currpid,

process_base) ;

len = strlen(filename) ;
if (len > MAX_PATHNAME_LEN) {
printf ("[ WARNING ] Weird filename length detected for PID %d.
Truncating.\n\n", currpid);
filename [0] = '\O0';
len = 0;

return filename;

void free_entry (gpointer key, gpointer value, gpointer user_data) {

}
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